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Abstract

A new two-and-a-half dimensional (2.5D) regularized inversion scheme has been developed for the interpretation of
residual gravity data by a dipping thin-sheet model. This scheme solves for the characteristic inverse parameters
(depth to top z, dip angle θ , extension in depth L, strike length 2 Y , and amplitude coefficient A) of a model in the
space of logarithms of these parameters (log(z), log(θ), log(L), log(Y), and log(|A|)). The developed method has been
successfully verified on synthetic examples without noise. The method is found stable and can estimate the inverse
parameters of the buried target with acceptable accuracy when applied to data contaminated with various noise
levels. However, some of the inverse parameters encountered some inaccuracy when the method was applied to
synthetic data distorted by significant neighboring gravity effects/interferences. The validity of this method for
practical applications has been successfully illustrated on two field examples with diverse geologic settings from
mineral exploration. The estimated inverse parameters of the real data investigated are found to generally conform
well with those yielded from drilling. The method is shown to be highly applicable for mineral prospecting and
reconnaissance studies. It is capable of extracting the various characteristic inverse parameters that are of geologic and
economic significance, and is of particular value in cases where the residual gravity data set is due to an isolated thin-
sheet type buried target. The sensitivity analysis carried out on the Jacobian matrices of the field examples investigated
here has shown that the parameter that can be determined with the superior accuracy is θ (as confirmed from drilling
information). The parameters z, L, Y , and A can be estimated with acceptable accuracy, especially the parameters z
and A. This inverse problem is non-unique. The non-uniqueness analysis and the tabulated inverse results presented
here have shown that the parameters most affected by the non-uniqueness are L and Y . It has also been shown that
the new scheme developed here is advantageous in terms of computational efficiency, stability and convergence
than the existing gravity data inversion schemes that solve for the characteristic inverse parameters of a sheet/dike.
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Background
Gravity and magnetic methods have many successful
applications in mineral prospecting, environmental appli-
cations, and crustal imaging (e.g., Abdelrahman et al.
1989; Ateya and Takemoto 2002; Batista-Rodríguez et al.
2013; Beiki and Pedersen 2011; Fedi 2007; Hinze 1990;
Hinze et al. 2013; LaFehr and Nabighian 2012; Long and
Kaufmann 2013; Mehanee 2014a; Nettleton 1976; Okubo
et al. 2013; Paoletti et al. 2013; Pei et al. 2014).
Techniques based on some geometrically simple bodies

(e.g., sheet) have been in use for the analysis of mag-
netic and gravity data acquired along profiles since the
1960s (e.g., Grant and West 1965). These techniques (e.g.,
Ateya and Takemoto 2002; Mushayandebvu et al. 2001;
Sazhina and Grushinsky 1971) are applied to obtain the
characteristic inverse parameters of the underlying target.
Three-dimensional (3D) thin-sheet model is a very good

approximation to a prismatic structure (e.g., an ore vein),
unless the thickness is somewhat greater than the depth to
the top (Telford and Geldart 1976) (Fig. 1). 3D thin-sheet
models can be used to describe and resemble, for exam-
ple, dikes or veins in exploration geophysics (Grant and
West 1965; Pirajno and González-Álvarez 2013; Santosh
and Pirajno 2014). Furthermore, thin-sheet solutions are
favored for their inexpensive computational cost (Holstein
et al. 2010) compared to full parallelepiped (e.g., Sazhina
and Grushinsky 1971) and polyhedral (e.g., Holstein and
Ketteridge 1996; Holstein 2003) solutions.
Inverse interpretation of an isolated residual gravity

anomaly by a 3D thin-sheet model remains of interest
in geophysical prospecting (e.g., Grant and West 1965;
Telford et al. 1976). The main objective of the interpre-
tation in this case is to retrieve the characteristic inverse
parameters of the 3D approximative model: depth to the
top, thickness, extension in depth, extension in the strike
direction, and direction and amount of dip.
Grant and West (1965) described a graphical method

for the interpretation of a residual gravity anomaly mea-
sured along a profile by a 3D dipping thin-sheet model.
The approach was successfully applied to sulfide prospect-
ing. However, the drawback with this method is that it is
based on sets of main and auxiliary characteristic curves,
and it essentially demands interpolation between pairs of
characteristic curves in order to estimate the magnitudes
of the sheet parameters. Telford and Geldart (1976) pre-
sented and described the forward modeling formula of
3D thin-sheet model, which is the basis for the inversion
scheme developed here. They also highlighted the limita-
tions (which are reported above) of this formula. Holstein
et al. (2010) used the concept of gravi-magnetic sim-
ilarity, and extended the thin-sheet potential modeling
formula to include the potential, field, and field gradi-
ent in both gravity and magnetic cases when the buried
bodies have uniform density or magnetization. Holstein

and Anastasiades (2010) derived an exact finite expansion
for the forward modeling computation of the gravita-
tional anomaly of a uniform thin-polygonal sheet. This
expansion exhibits the required absolute numerical sta-
bility (Holstein and Anastasiades 2010). One can refer to
Holstein and Ketteridge (1996) and Holstein et al. (2014),
and the references therein, for a more detailed and com-
prehensive information on this particular thin-polygonal
sheet subject. Beiki and Pedersen (2011) developed a
data window constrained two-dimensional (2D) inver-
sion technique for the interpretation of gravity gradient
tensor data using dike/sheet and contact models. By defi-
nition, a data window contains a number of particular data
points out of the entire measured gravity profile (Beiki and
Pedersen 2011). These particular data points are mea-
sured with respect to the center (that is located at the
maximum response of the profile) of this window. This
means that the gravity data points located to the left
and right flanks of a window were not considered in
the inversion. In other words, the full measured grav-
ity signature (that is, primarily influenced by the buried
anomalous structure) was not considered in the inter-
pretation. A series of successive data windows is con-
structed by increasing the number of data points used
(out of the whole gravity profile) for estimating the target
parameters (Beiki and Pedersen 2011). Beiki and Pedersen
(2011) used the MATLAB nonlinear least squares opti-
mization tool “lsqnonlin” to solve the minimization prob-
lem of their scheme. This minimization tool is based
on the Levenberg-Marquardt method (Levenberg 1944;
Marquardt 1963). The convergence of the Levenberg-
Marquardt method and its corresponding inverse param-
eters (e.g., the depth, dip angle, and thickness of the
buried target) obtained from each window were plotted
in their paper. According to Beiki and Pedersen (2011),
solution with the smallest data fit error is selected (out
of the entire solutions retrieved from all attempted data
windows) as the most reliable one. It appears from the
numerical models analyzed by Beiki and Pedersen (2011)
that the use of a few data points (out of the whole mea-
sured gravity profile) in inversion was essential so that
the Levenberg-Marquardt method can converge. Note
that the aforementioned limitations (that are pertinent
to the number of data points used in inversion and to
the convergence and stability of the minimizer) are sat-
isfactorily treated and fully well illustrated here as will
be seen. Note that the Levenberg-Marquardt method
(Madsen et al. 2004) was used also in the seismic tomog-
raphy inversions.
Holstein et al. (2014) derived the gravity potential, field,

and field gradient for triangular sheet targets with contin-
uous densities across the boundaries to make it possible
to approximate general curved surfaces. They verified
the obtained modeling formula via numerical testing and
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Fig. 1 A sketch showing geometry and characteristic parameters (depth to the top z, extension in depth L, finite extension in the strike direction 2 Y ,
thickness t, and direction and amount of dip θ ) of a 3D dipping thin-sheet-like target (Grant and West 1965)

simulated a model described by a dike curvature and a
density compaction.
From this review, it appears to us that Grant and West

(1965) are the only authors to have developed a method
for the quantitative inverse interpretation of a residual
gravity profile measured over a 3D dipping structure by
3D dipping thin-sheet model. Consequently, to the best of
our knowledge, a regularized scheme (based on 3D dip-
ping thin-sheet type model) for the inversion of residual
gravity anomaly measured along a profile over a 3D body
was not developed before.
The objective of this paper is to develop an efficient

and rigorous regularized inversion scheme (based on 3D
dipping thin-sheet model) for the interpretation of a resid-
ual gravity anomaly measured along a profile traversing
the center of a 3D buried anomalous structure and nor-
mal to the strike of this structure. This inversion scheme
is called two-and-a-half dimensional (2.5D) inversion (see
e.g., Hinze et al. 2013, p. 177). The developed scheme
is capable of dealing with the nonlinearity and the ill-
posedness of this 2.5D inverse problem and has many
merits. First, it inverts the entire residual gravity data
set rather than just a few characteristic points out of
this data set. Second, it simultaneously recovers all the
characteristic inverse parameters (depth z, direction and
amount of dip θ , extension in depth L, strike length 2Y ,

and amplitude coefficient A) of the model (Fig. 1). Note
that the parameter A is given by �ρ t (A = �ρ t),
where �ρ and t are the density contrast and thickness of
the sheet (a discussion on this parameter is given in the
“Forward modeling solution” section), respectively. Third,
the algorithm uses the exact forward modeling formula
and evaluates the Jacobian (Fréchet) matrix (sensitivity
matrix) of the scheme analytically and accurately. Fourth,
the developed scheme (referred here as the logarithmic-
space algorithm) employs the Tikhonov regularization
(Tikhonov and Arsenin 1977) and the steepest descent
(SD) and Gauss-Newton (GN) methods (e.g., Zhdanov
2002) in the space of logarithms of the model param-
eters (log(z), log(θ), log(L), log(Y ), and log(|A|)) rather
than in the space of the parameters themselves (z, θ , L,Y ,
and A). The use of the logarithmed parameters is essen-
tial in order to impose the positivity property of these
parameters and hence to maintain the convergence and
stability of the inversion scheme. The main achievements
of this paper are as follows: (1) the use of the loga-
rithm in all inverse parameters of the anomalous body in
order to maintain the positivity of these parameters and
the convergence of the inversion scheme, (2) the inves-
tigation of the non-uniqueness (that turned out to be
imperative as will be seen and discussed here) of this
particular inverse problem, and (3) the insights pertinent
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to the model parameters sensitivities in relation to non-
uniqueness.
The paper is structured as follows. First, we briefly

describe the direct problem (“Forward modeling solution”
subsection). Second, the formulation of this particular
inverse problem and its solving is discussed. Third, before
applying this method to real data, the accuracy of the
scheme is assessed and verified to numerical models
with and without noise. Finally, the applicability of the
developed technique to real data is demonstrated on two
published field data examples from mineral exploration.

Methods
Forward modeling solution
The gravity anomaly (g), due to a 3D dipping thin-sheet
target at a point x along a profile traversing the center
of the target and normal to the target’s strike direction
(Fig. 1), has a closed-form solution and is given (Grant and
West 1965; Telford and Geldart 1976) by

g (xi,�ρ, t, θ , z,Y , L) = 2 γ �ρ t⎡⎣ 1
2

sin θ log

⎧⎨⎩
{
(z + L sin θ)2 + (xi + L cos θ)2 + Y 2} 1

2 − Y{
(z + L sin θ)2 + (xi + L cos θ)2 + Y 2} 1

2 + Y

×
(
x2i + z2 + Y 2) 1

2 + Y(
x2i + z2 + Y 2) 1

2 − Y

⎫⎬⎭
− cos θ tan−1

⎧⎨⎩ Y (z sin θ + L + xi cos θ){
(z + L sin θ)2 + (xi + L cos θ)2 + Y 2} 1

2 (xi sin θ − z cos θ)

⎫⎬⎭
+ cos θ tan−1

⎧⎨⎩ Y (z sin θ + xi cos θ){
x2i + z2 + Y 2} 1

2 (xi sin θ − z cos θ)

⎫⎬⎭
⎤⎦ ,

(1)

where xi is the coordinate (m) of the measurement station,
�ρ is the density contrast (kg.m−3), t is the thickness (m),
θ is the dip angle (degrees) of the body measured anti-
clockwise, z is the depth (m) to the top, 2Y is the strike
length (m), L is the dipping extent (m) of the body, and γ is
the gravitational constant (6.67384 × 10−11 m3 kg−1 s−2).
As indicated in the “Background” section, the thin sheet

described above is a good approximation to a 3D pris-
matic structure, unless the thickness is somewhat greater
than the depth to the top (z) (Telford and Geldart 1976).
The presence of the thickness (t) outside the main square
bracket of formula (1) is a consequence of the thin-sheet
assumption used in deriving this formula.
Note that formula (1) can be used to accurately simu-

late a two-dimensional (2D) target by substituting in this
formula a large value for the parameter Y (Grant and
West 1965). Analysis of formula (1) with respect to the 2D
simulation accuracy is beyond the scope of this paper.
It is noted that the parameters �ρ and t can be com-

bined into a single parameter (the so-called amplitude
coefficient, A (kg.m−2) = �ρ t) to help minimize the

non-uniqueness nature of this particular inverse prob-
lem. Non-uniqueness means that many different models
(approximative solutions) could fit the observed data with
the same accuracy (e.g., Tarantola 1987). The matter per-
tinent to the aforementioned parameter combination will
be discussed further in the “Discussion” section.

Formulation of this 2.5D inverse problem and its solving
In this paper, we seek to solve the discrete 2.5D nonlinear
inverse problem described by the operator equation (e.g.
Menke 2012)

G(m) = g◦, (2)

where G is the forward modeling operator acting on m to
produce some predicted gravity data (g(x, A, z, Y, L, θ ))
at a finite number (N) of observation points along a pro-
file, m is a column vector of the model parameters (that
is the vector of some approximative solution) we seek to
retrieve from inversion (m =[A, z,Y , L, θ ]T ), g◦ is a col-
umn vector of a finite set of noisy gravity data measured
along this profile, g◦ =[ g◦1 , g◦2 , g◦3 , . . . g◦N ]T , and T is the
transposition operator.
Equivalently, Eq. 2 can be written as

g (xi,A, z,Y , L, θ) = g◦i , 1 ≤ i ≤ N . (3)

Recent advances to solve the inverse problem of gravi-
metric data are based on the use of deterministic
approaches that utilize the regularized least squares tech-
niques and the differentiability of the objective function
subject to minimization (e.g., Zhdanov 2002). As indi-
cated earlier, the inversion scheme described in this paper
recovers the characteristic parameters of the buried target
in a minimal time (a few seconds). Therefore, automatic
deterministic approaches are much more efficient (see,
for example, Mehanee 2015) than the approaches that are
based on the trial-and-error modeling method.
Since the residual gravity data are usually corrupted

with some noise, we do not seek to fit them exactly
(Tarantola 2005). Rather, we seek (Ramlau 2005; Zhdanov
2002)

∥∥g − g◦
∥∥ =

[ N∑
i=1

(g(xi,A, z,Y , L, θ) − g◦i)2
] 1

2

≤ δ, (4)

where g is a column vector of the predicted data calculated
along the profile, using formula (1), from some approx-
imative solution m, g =[ g1, g2, g3, . . . gN ]T , and δ is the
noise level embedded in the measured data (go).
Solution of inverse problem (2) is non-unique (that is,

different sets of approximative solution can equally fit the
data subject to inversion) as it will be seen from the exam-
ples carefully analyzed here. Therefore, it is ill-posed (e.g.,
Gribok et al. 2002). The conventional method of solving
ill-posed inverse problems is based on the minimization
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of the Tikhonov parametric functional (e.g., Mehanee and
Zhdanov 2002; Tikhonov et al. 1998):

φ (m, g◦,α) = ∥∥ G(m) − g◦
∥∥2 +

α
{
Cz ‖ z ‖2 + Cθ ‖ θ ‖2 + CL ‖ L ‖2 + CA ‖ A ‖2

+ CY ‖ Y ‖2 } = min,
(5)

where α (dimensionless) is the regularization parameter,
the selection of which is addressed in the “Discussion”
section, and Cz

(
mGal2
m2

)
, Cθ

(
mGal2
degree2

)
, CL

(
mGal2
m2

)
,

CA
(
mGal2m4

kg2

)
, and CY

(
mGal2
m2

)
are some constants

employed in (5) in order to adjust the inconsistency of
units of the six terms of φ (m, g◦,α) and in order to make
the values of the C terms comparable (balanced). Given
the aforementioned units of those constants, φ (m, g◦,α)

in this case (that is, in this particular choice of units)
is given in the units of mGal2. Equivalently, (5) can be
readily re-written as:

φ (m, g◦,α) = ∥∥ G(m) − g◦
∥∥2 + α ‖ C m ‖2 = min,

(6)

where C = diag
[√

Cz,
√
Cθ ,

√
CL,

√
CA,

√
CY

]
.

The first term of (6) is the data misfit functional, deter-
mined as the square norm of the difference between the
observed and predicted data, and the second term is a
stabilizing functional, the stabilizer.
The characteristic model parameters (A, z,Y , L, and θ )

of a 3D thin sheet can have large variations in magni-
tude (e.g., z = 100 m, A = 105 kg.m−2) which can mean
that the smaller parameters are ignored in the inversion
as they have smaller sensitivities. Performing the inver-
sion in the logarithmic space of the model parameters
(log(|A|), log(z), log(Y ), log(L), and log(θ)) makes these
logarithmed parameters and their corresponding sensitiv-
ities comparable and balanced as will be seen. In other
words, the logarithmed variants will not dominate one
another as do the non-logarithmed values. Furthermore,
the inversion in the logarithmic space of themodel param-
eters forces and guarantees the positivity of the model
parameters we seek. Inversion in the non-logarithmic (lin-
ear) space (that is, the space of the model parameters
themselves: A, z, Y, L, and θ ) can generate negative model
parameters, and hence results in scheme divergence (e.g.,
Mehanee 2014a). Therefore, the new logarithmed-space
objective functional takes the form:

	 (m̃, g◦,α) = τ
∥∥ G̃(m̃) − g◦

∥∥2 + α ‖ m̃ ‖2 = min,
(7)

where τ is a scaling parameter used in order to make 	

dimensionless and is set to 1
(
τ = 1 1

mGal2

)
, and m̃ =

[ log(|A|/A◦), log(z/z◦), log(Y/Y◦), log(L/L◦), log(θ/θ◦)]T .
Each of the parameters A◦, z◦, Y◦, L◦, and θ◦ (the so-called
scaling parameters) is of a unit (positive) value and is
introduced in order to make the quantities that are under
the logs in m̃ dimensionless. The introduction of these
parameters is physically necessary because the logs do
not allow dimensions to be defined. As mentioned above,
α is a dimensionless quantity. Note that hereinafter
the scaling parameters of m̃ are dropped to simplify
the notations.
All the numerical models and real data examples shown

here are inverted and analyzed by the logarithmic min-
imization formulation presented in (7). We note that,
in the restricted case of the noise-free and neighbor-
ing/interference effect-free numerical example (Model 1),
the nonlinear minimization problem (7) is solved itera-
tively using a sequential hybrid technique that automat-
ically combines the SD and GN methods (see Mehanee
2015, and the references therein) in order to verify and val-
idate the developed inversion scheme prior to applying it
to noisy and real data sets.
The use of the hybrid technique was essential. This is

because the SDmethod converges very slowly or stagnates
(as found from extensive noise-free numerical experi-
ments) at the final stage of its iterative minimization
process. It was also found from these experiments that the
GN method essentially requires a very good initial guess
in order to converge (Zhdanov 2002). That is why the SD
method (which does not require a good initial guess to
converge as will be seen in the “Numerical tests” subsec-
tion) is employed first in the developed scheme in order
to generate and prepare a suitable initial guess for the GN
method.
In the framework of this hybrid scheme, the SD

method is used first until a normalized misfit (defined as∥∥G̃(m̃) − g◦
∥∥

‖g◦‖ ×100 %) of roughly around 5−10 % (depending
on the model subject to inversion) is reached. After that,
the GN method is applied to the observed data, where
the inverse results produced from the SD method is used
as the initial guess for the GN method. The GN method
terminates when a normalized misfit below 10−5 % is
reached.
We note that when inverting the distorted (by noise

and/or by interference due to nearby bodies) data sets
(Model 2 and Model 3) shown in the “Numerical tests”
subsection, and when inverting the two real data sets
presented in the “Field data inversion” subsection, the
minimization problem (7) was solely solved by the SD
method. Unlike the noise-free data set (Model 1), we
found in our experience for this particular inverse prob-
lem that the SD method can be sufficient for the inver-
sion of the distorted and real field data examples. This
is because in these examples (the distorted and real
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field data), we neither expect nor seek to exactly fit the
observed data (see the figures pertinent to Model 2 and
Model 3).
The entire computational steps of the GN and SDmeth-

ods of the inverse scheme are presented and discussed in
Appendices 1 and 2. The code of the scheme is imple-
mented in MATLAB. We note that no built-in MATLAB
optimization (minimization) functions were used in the
2.5D code of our paper.

Sensitivity (Fréchet) matrix calculation
The Jacobian (Fréchet) matrix (̃F) used in this scheme is
calculated analytically with respect to the inverse param-
eters we seek (log(|A|), log(z), log(Y ), log(L), and log(θ))

as:

∂g
∂ log(|A|) = ∂g

∂A
∂A

∂ log(|A|) = A
∂g
∂A

,

∂g
∂ log(z)

= ∂g
∂z

∂z
∂ log(z)

= z
∂g
∂z

,

∂g
∂ log(Y )

= ∂g
∂Y

∂Y
∂ log(Y )

= Y
∂g
∂Y

,

∂g
∂ log(L)

= ∂g
∂L

∂L
∂ log(L)

= L
∂g
∂L

, and

∂g
∂ log(θ)

= ∂g
∂θ

∂θ

∂ log(θ)
= θ

∂g
∂θ

.

(8)

The use of the logarithmed model parameters has the
benefit of making the aforementioned derivatives dimen-
sionally the same, which is a good strategy for balancing
the Jacobian terms. The quantities ∂g

∂A ,
∂g
∂L ,

∂g
∂z ,

∂g
∂θ
, and ∂g

∂Y
are evaluated analytically by differentiating the forward
modeling formula (1).

Singular value decomposition
The singular value decomposition (SVD) of an m × n
matrix (in our case this matrix is F̃ ε RN×5, whereN and 5,
respectively, are the number of data points along the grav-
ity profile and model parameters) is given (e.g., Jupp and
Vozoff 1975) by:

F̃ = U SVT , (9)

where U = [u1,u2, . . . ,um] ε Rm×m and V = [ v1, v2, . . . ,
vn] ε Rn×n are both orthogonal matrices. S ε Rm×n is
a diagonal matrix with non-negative real values (the so-
called singular values) arranged in decreasing order, s1 ≥
s2 . . . . . . ≥ sn ≥ 0. The sequence S =[ s1, s2, . . . , sn] is
referred to as the singular spectrum of F̃ . The columns
of U =[u1,u2, . . . ,um] and V =[ v1, v2, . . . , vn] are the
left and right singular vectors in the input and output
spaces of the transformation represented by F̃ , respec-
tively. Themagnitude of the singular values in S represents

and determines the corresponding important singular
vectors in the columns of U and V. The SVD is a use-
ful tool for understanding the sensitivity analysis of the
various model parameters of the 3D thin-sheet model as
will be seen.

Results and discussion
Numerical tests
Prior to applying the developed inversion algorithm to
real data examples, its accuracy is assessed and analyzed
first on three numerical models. All inverse solutions are
rounded to the first integer.

Model 1: noise-free example
The gravity response of a thin-sheet type model with z =
25 m, L = 50 m, Y = 500 m, θ = 30o, and A = 5700 kg/m2

is generated at the ground surface (Fig. 2).
The presented algorithm supplemented with the SD

method was applied to this noise-free dataset for 6000
iterations (yielding to a normalized misfit of about 4.7 %)
using the initial guess shown at the top panel of Fig. 2.
The corresponding inversion results (the so-called the
preliminary inverse solution) are shown at the top panel
of Fig. 2. To avoid possible stagnation with the SD
method, the same algorithm supplemented with the GN
method was applied to the same residual gravity data.
The aforementioned preliminary inverse solution evolved
from the SD method was employed automatically, as
initial guess, in the GN method. The bottom panel of
Fig. 2 shows the final inverse solution obtained from the
scheme.
It is seen that the algorithm has converged below 10−6 %

(normalized misfit) and successfully recovered the true
value of all inverse parameters of the buried body. Note
that the observed data and predicted response are coin-
cident with each other. The regularization parameter (α)
used in the SD and GN methods is 10−5 and 10−12,
respectively. Figure 3 depicts the behavior of the misfit
and objective functional corresponding to the SD and GN
inversion results shown in Fig. 2.

Model 2: noisy example
In order to assess and analyze the robustness and stability
of the inverse algorithm, the developed scheme has been
applied to a noisy profile. Subsequent noise levels of about
7, 11, and 20 % have corrupted the gravity data generated
by a numerical model described by the following: z = 12
m, L= 35m, Y = 100m, θ = 120◦, andA= 12,000 kg/m2.
Each noise level was separately generated and added to
the noise-free data set G̃(m̃) using the MATLAB function
“awgn” in order to produce the corresponding corrupted
data set g◦ subject to inversion. The aforementioned noise
levels were separately calculated as

∥∥g◦ − G̃(m̃)
∥∥

‖g◦‖ × 100%.
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Fig. 2Model 1: noise-free data. Top panel: preliminary (initial) inversion results obtained from the steepest descent (SD) method. Bottom panel: final
inversion results obtained from the Gauss-Newton (GN) method which used the inversion results produced from the SD (top panel) as initial guess;
see the text for details. Bottom panel shows that the observed and predicted data are coincident with each other

The corresponding final inversion results produced by
the SD method are rendered in Fig. 4. The scheme ter-
minated when the embedded noise level is reached by
the SD method. Figure 5 shows the behavior of the mis-
fit and objective functional corresponding to the inversion
results shown in Fig. 4. An α of 10−6 was used in all the
inverse calculations of this model.
The obtained inversion results show that the developed

inverse technique is stable with respect to the noise lev-
els embedded. Tables 1 and 2 present the inverse solutions
and the corresponding error (in percentage) of eachmodel
parameter measured with respect to the true value of this
parameter. One can see that error range of about 4–39 %
was encountered in the retrieved inverse solutions. It can
be seen that the highest errors are associated with the
data set contaminated with the highest noise level (20 %),
which is not unexpected. Note that the model parameter
θ encountered the smallest error in the case of the 20 %
noise. Whereas the rest of the model parameters encoun-
tered the smallest error in the case of the 11 % noise. This

could be attributed to the variation in the model param-
eter sensitivities and noise level that contaminated the
data.

Model 3: interference effect example
In some geologic settings, the measured gravity signa-
ture of a 3D body may sometimes be influenced by the
neighboring/interference effect (that is, the effect of some
nearby anomalous bodies) (e.g., LaFehr and Nabighian
2012). In order to examine and assess this effect on the
accuracy of the inverse solution, we have computed, using
formula (1), the forward modeling response of each of
three spatially distributed bodies (Fig. 6, bottom panel).
These bodies could resemble some intrusive dikes, which
are simulated by thin sheets. The model parameters and
forward modeling response of each body are illustrated at
the top panel of Fig. 6. The profile of the composite gravity
response of all three bodies is shown in the middle panel.
This profile shows three anomalous signatures: the promi-
nent anomaly of interest here (for example, the ore body)
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Fig. 3Model 1: noise-free data. Behavior of the misfit and objective functional corresponding to the SD (top panels) and GN (bottom panels)
inversion results shown in Fig. 2

present in the middle of the profile and the two minor
anomalies surrounding the prominent one.
Two interpretive scenarios are explored and investigated

for analyzing and inverting the profile of the composite
effect (Fig. 6, middle panel) by a single thin sheet (the
subject of this paper). Scenario 1 (whole profile inver-
sion) in which the whole profile is inverted and analyzed.
Scenario 2 (extracted (truncated) profile inversion) in
which only the distorted prominent anomaly (marked by
arrows in Fig. 6, middle panel) out of the whole profile
is inverted. Scenario 2, in this particular case, is probably
more realistic (in terms of inverting its data by a single
thin-sheet model) as its gravity response can resemble
a single thin-sheet model. Scenario 1 is not so realis-
tic (in terms of inverting its data by a single thin-sheet
model) as its gravity response subject to inversion has
three anomalous signatures that cannot be attributed to
or represented by a single thin-sheet model. However, the

inversion of scenario 1 has been carried out here solely
for the sake of investigative purpose, better understand-
ing and for the full illustration of the developed inversion
scheme.
The top panel of Fig. 7 shows the true model

parameters of the main body and the corresponding
approximative inverse results of Scenario 1 for which a
normalized misfit of about 10.85 % is reached using an
α of 10−6. The inversion results of Scenario 2 are shown
in the bottom panel of Fig. 7. A normalized misfit of
6.71 % is obtained, and an α of 10−9 was used in the
inverse computations. This analysis shows that the param-
eters A, L, and Y of the main body exhibited significant
inaccuracy.
On the basis of this investigation, we can conclude that

the developed scheme produces more accurate inversion
results for an isolated target, and thus it is more suitable
for isolated anomalies or for anomalies with insignificant
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Fig. 4Model 2: noisy data. Inversion results corresponding to various noise levels. Data corrupted with about 7 % (top panel), 11 % (middle panel), and
20 % (bottom panel) noise. The results shown in this figure and all subsequent figures are recovered by the SD method solely . See the text for details

neighboring/interference effect. Isolated targets (such as
ore veins and dikes) are frequent in many geologic set-
tings and can be of a paramount economic interest as will

be seen in the next two real data examples in which the
gravity data were acquired for chromite, copper, and gold
prospecting.
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Fig. 5Model 2: noisy data. Behavior of the misfit and objective functional corresponding to the inversion results shown in Fig. 4. The top, middle
and bottom panels correspond to those of Fig. 4

Field data inversion
In order to examine and assess the applicability of
the developed inversion technique, two published field
examples, from mineral exploration in Canada and Cuba,
with various depth of burial, geologic complexity, and
interference effects are analyzed. These particular data
sets were selected in this research paper for a number of

Table 1 Model 2 (noisy data). Inversion results of various noise
levels. The true model parameters are z = 12 m, L = 35 m, Y =
100 m, A = 12,000 kg/m2, and θ = 120 °

Noise level (%)
Inverse parameters

z (m) L (m) Y (m) A (kg/m2) θ (degrees)

7 9.8 44.7 82 9945.5 115

11 10 43.3 85 10,190 115.4

20 10 48.6 80 9635 116.7

reasons. First, these data sets were generated by buried
causative ore bodies, which can resemble thin-sheet
models (Davis et al. 1957; Grant and West 1965; Siegel
et al. 1957), the subject of this paper. Second, these data
sets were measured from sites with known drilling infor-
mation; hence, we can compare the numerical results
yielded from the inversion against those confirmed
from drilling. Third, these sites have core samples from

Table 2 Model 2 (noisy data). Error of the inversion results shown
in Table 1

Noise level (%)
Error of inverse parameters (%)

z L Y A θ

7 18.3 27.7 18 17 4.2

11 16.6 23.7 15 15 3.8

20 16.6 38.9 20 19.7 2.8
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which the density contrasts were accurately estimated in
laboratory. As pointed out earlier, the knowledge of the
density contrast (�ρ) is essential in order to compute the
thickness (t) of the body from the amplitude coefficient
(A) obtained from the inversion.

TheMobrun anomaly, Canada
Inverse results A prominent Bouguer gravity anomaly was
observed over a massive sulfide ore body in the Noranda
Mining District, Quebec, Canada (Grant and West 1965;
Siegel et al. 1957). Figure 8 shows the SW-NE residual
gravity profile (whose location is shown in Figure 10-1,
page 272, Grant andWest 1965) taken normal to the strike
of the buried causative ore vein. Directional drilling inter-
sected sulfides over a distance slightly greater than 30.5 m

(Grant and West 1965, page 282, see also Figure 10-11 in
page 281).
Grant and West (1965) reported that the average den-

sity of core samples of the mineral taken from drilling was
4600 ± 500 kg/m3, and for the host rock, the density was
about 2700 kg/m3. Hence, the ore body has a density con-
trast (�ρ) of 1400–2400 kg/m3. Thus, the aforementioned
two density values are equal to the bulk densities of the
ore and the host rock, respectively.
The inverse algorithm has been applied to the above

mentioned residual gravity profile. Figure 8 shows the two
approximative inverse solution sets obtained from two dif-
ferent regularization parameters (α) using an initial guess
of (z = 2 m, L = 30 m, A = 2200 kg/m2, Y = 50 m, and
θ = 30°). The inversion results shown at the top panel

Fig. 6Model 3: neighboring/interference effect of three nearby bodies. Top panel: individual forward modeling responses computed using
formula (1).Middle panel: composite gravity response subject to inversion (see Fig. 7). Bottom panel: a sketch showing the causative bodies whose
characteristic parameters are shown in the top panel. See the text for details



Mehanee and Essa Earth, Planets and Space  (2015) 67:130 Page 12 of 26

Fig. 7Model 3: neighboring/interference effect of three nearby bodies. Top panel: approximative inverse solution obtained from the inversion of the
whole profile shown in the middle panel of Fig. 6. Bottom panel: approximative inverse solution obtained from the inversion of the extracted
(truncated) response (marked by arrows in the middle panel of Fig. 6). See the text for details

were recovered using an α of 10−7 and correspond to a
normalized misfit of 2.93 %. The bottom panel illustrates
the results retrieved from the algorithm using an α of
10−4, for which a normalizedmisfit of 2.48 % was reached.
It is noted that the density contrast range mentioned
above was used to estimate the corresponding thickness
(t) range of the ore body from the amplitude coefficient
(A = t �ρ) evolved from the inversion.
In order to monitor and assess the non-uniqueness

(equivalence) issue, which is not unexpected for this par-
ticular inverse problem, several initial guesses were also
attempted in the scheme. Table 3 summarizes all obtained
inversion results. It can be seen from the table that the
regularization parameter indeed can affect the inverse
solutions.
One can see that the two approximative solution sets

(the so-called here “Equivalent Model 1” and “Equivalent
Model 2”) shown at rows 3 and 5 of Table 3 are different,
though each of them has the same normalized misfit value

(2.7 %). This is attributed to the non-uniqueness nature of
this particular inverse problem; that is, different inverse
models can equally fit the observed data.
On the basis of the a priori information (which includes

the contour form of the residual gravity map from which
the gravity profile subject to inversion was taken), it can
be suggested that the approximative inverse solutions pre-
sented in rows 4, 5, and 6 of Table 3 are not very realistic.
On the other hand, these tabulated results suggest that the
most common model (interpretive model to resemble the
buried vein deposit) could be that shown in rows 1, 2, and
3. In light of this, it is reasonable to suggest that the cor-
responding inverse parameters of the interpretive model
can be the averages of those shown in the aforementioned
three rows. Therefore, the interpretive model is described
by z = 12.4 m, L = 184.4 m, A = 55,791.2 kg/m2, Y =
118.6 m, θ = 86◦, and t = 23–40 m. Figure 9 shows the
Mobrun sulfide ore body, delineated from drilling, at 50 m
depth (from Grant and West 1965), and the interpretive
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Fig. 8 The Mobrun anomaly, Canada. Inversion results obtained from two different regularization parameters (α) and same initial guess. The results
shown at the top and bottom panels correspond to a normalized misfit of 2.93 and 2.48 %, respectively. The measured and predicted data are shown
in solid and open circles, respectively

model suggested here. The results confirmed from drilling
(z, t, and Y ), and those recovered from inversion are in
reasonable match. We note that other gravity inversion
methods (e.g., Li and Oldenburg 1998; Zhdanov et al.
2004) could produce a better fit.
The parameterA retrieved from inversion (A= 55,791.2

kg/m2) suggests a thickness of 23–40 m (t = 23–40 m)
which is greater than the depth recovered from inversion
(z = 12.4 m). Probably this is because the actual ore

body is not a thin sheet. Supporting evidence is that the
actual ore body has a thickness of 31 m as revealed from
a slice (constructed from drilling) taken at 50 m depth
(Fig. 9). And that the depth to the top of the target is less
than 30.5 m as inferred from directional drilling that inter-
sected the body at about 30.5 m. As pointed out in the
“Forward modeling solution” subsection, the 3D thin
sheet is a good approximation to a prismatic structure,
unless the thickness (t) is somewhat greater than the depth

Table 3 The Mobrun anomaly, Canada. Tabulated inversion results. α is the regularization parameter

Misfit % α
Initial guess Inverse solution

z (m) L (m) Y (m) A (kg/m2) θ (degrees) z (m) L (m) Y (m) A (kg/m2) θ (degrees)

2.93 10−7 2 30 50 2200 30 11 203 125 52,604 86

2.48 10−4 2 30 50 2200 30 14 172 113 58,801 86

2.7 10−2 10 500 500 2000 120 12 178 118 55,968 86

2.47 10−4 10 500 500 2000 120 14 119 262 59,631 86

2.7 10−4 10 1000 80 20,000 10 17 299 55 75,420 86

2.67 10−3 10 1000 80 20,000 10 16 312 59 71,188 86
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Fig. 9 The Mobrun anomaly, Canada. Plan showing the Mobrun sulfide ore body (in gray), outlined from drilling, at 50 m depth (from Grant and
West 1965). The inversion results are marked by the black box

to the top (z) (Telford et al. 1976). However, we sought in
this paper to fit and interpret this residual gravity profile
by a thin-sheet-like model for investigative purposes and
the full illustration of the developed inverse scheme, and
in order to gain some insights.
Prior to any drilling in this area, Siegel et al. (1957) ana-

lyzed this gravity profile based on a 2D trial and error
modeling method and reported a corresponding solution
of z = 6 m, L = 186 m, and t = 31 m. It is relevant
to note that the strike length of the deposit in this case
is assumed to be infinite as the interpretation was essen-
tially based on 2D assumption. Grant and West (1965)
too interpreted this profile but as a 3D thin sheet, based
on a graphical method, and the retrieved inverse solu-
tion is as follows: z = 17 m, L = 170 m, 2Y (strike
length) = 205 m, θ = 83◦, and t = 36 m. These results,
too, show that the approximative model is quasi-vertical.
Using an Euler deconvolution technique, Roy et al. (2000)
interpreted this profile by a 2D vertical ribbon model and
obtained an inverse model of z = 22.7 m and L = 52 m.
While their results are in some variations from the true
results confirmed from drilling, these results are still use-
ful as they could be used as a reasonable initial guess in
deterministic (gradient-type) inversions. As noted above,
other gravity inversion methods (e.g., Li and Oldenburg
1998; Zhdanov et al. 2004) could produce a more accurate
inverse solution and fitting.

Sensitivity analysis
In order to get some insights on a possible mutual inter-

relation between the non-uniqueness of this particular
inverse problem and the model parameter sensitivities
(that is, the Fréchet matrix; F̃ = ∂g

∂m̃ ), the sensitivities of
the aforementioned two equivalent solutions (“Equivalent
Model 1” and “Equivalent Model 2”) and of the two ini-
tial guesses used in the inversion of these two equivalent
solutions have been calculated.
The top panel of Fig. 10 depicts the sensitivities (abso-

lute values) computed from the initial guess (shown at
row 3 of Table 3) from which “Equivalent Model 1” was

evolved. The sensitivities (absolute values, too) of the
inverse parameters of “Equivalent Model 1” (shown, too,
at row 3 of Table 3) are illustrated in the bottom panel
of Fig. 10. The corresponding sensitivities of “Equivalent
Model 2” and its initial guess (both are shown at row 5 of
Table 3) are rendered in Fig. 11.
Note that the sensitivities of the inverse parameters

log(L) and log(Y ) (the two main parameters that appear
to be most affected by the non-uniqueness of this par-
ticular inverse problem as will be strengthened further
and seen in the sensitivity subsection of the field exam-
ple of the Camaguey area, Cuba) of “Equivalent Model
1” and “Equivalent Model 2” are found to be posi-
tive real numbers. The bottom panel (corresponding to
these two equivalent models) of Figs. 10 and 11 quali-
tatively reveals that the sensitivity curves of these two
parameters (log(L) and log(Y )) have a similar behavior
and form. The degree of conformity of these two sen-
sitivity curves depends upon the values of the model
parameters used in the sensitivity calculation. The top
and bottom panels of Figs. 10 and 11 show that the
parameter log(θ) has the dominant sensitivity. Pertinent
quantitative analysis based on the singular value decom-
position (e.g., Press et al. 1988) is provided in the next
paragraph.
In order to understand better the mutual interrelation

between the non-uniqueness of this particular inverse
problem and the model parameters sensitivity, the SVD
(e.g., Jupp and Vozoff 1975, Press et al. 1988) was carried
out separately on the Fréchet matrix of “Equivalent Model
1” and of the initial guess of this equivalent model.
Table 4 shows the singular values and their variabil-

ities (in percentage) of the sensitivity matrix shown at
the top panel of Fig. 10. The model parameters used
in the calculations of this matrix are also listed at this
panel. It can be seen from Table 4 that the singular val-
ues encountered a very rapid decay, and that most of
the variability (97.73%) is captured by the first singu-
lar vector in the parameter space (right singular vectors).
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Fig. 10 The Mobrun anomaly, Canada. Sensitivity pertinent to this profile’s “Equivalent Model 1” and its initial guess (both are shown at row 3 of
Table 3), see the text for details. Toppanel: sensitivities calculated from the initial guess. Bottompanel: sensitivities calculated from “Equivalent Model 1”

Note that the first three singular vectors in the parame-
ter space collectively achieved a variability of more than
99.9 % (Table 4). Figure 12 depicts the various compo-
nents of the three aforementioned singular vectors. The
left top panel (in which the components corresponding to
the first singular value (s1 = 19.7) are plotted in linear
scale) shows that the parameter log(θ) has the most dom-
inant effect. The right top panel (in which the absolute
value of the same aforementioned components are plot-
ted in log scale) shows that the order of the importance
of parameters (for this particular model parameter set)
is as follows: log(θ), log(|A|), log(L), log(Y ), and log(z).
This panel shows that the components pertinent to the
parameters log(L) and log(Y ) nearly have the same mag-
nitude, this agrees well with the sensitivity curves (of these

two parameters) rendered at the top panel of Fig. 10 as
the first right singular vector has the most variability as
indicated above (97.73 %). Furthermore, the middle and
bottom panels (pertinent to the second and third right sin-
gular vectors, which collectively achieved a variability of
2.18 %) of Fig. 12 also show that the components pertinent
to the parameters log(L) and log(Y ) have a comparable
magnitude.
Table 5 shows the singular values and their variabilities

of the sensitivity matrix (shown at the bottom panel of
Fig. 10) of “Equivalent Model 1”. This table indicates that
most of the variability (96.7 %) is also ubiquitous to the
first singular vector in the parameter space. Figure 13
depicts the various components of the first three right sin-
gular vectors. The top left panel shows that the parameter
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Fig. 11 The Mobrun anomaly, Canada. Sensitivity pertinent to this profile’s “Equivalent Model 2” and its initial guess (both are shown at row 5 of
Table 3), see the text for details. Top panel: sensitivities calculated from the initial guess. Bottompanel: sensitivities calculated from “Equivalent Model 2”

log(θ) has the most dominant effect. This agrees with that
revealed from the top left panel of Fig. 12. The top right
panel of Fig. 13 shows that the order of the importance
of parameters this time (that is, for “Equivalent Model 1”)
is as follows: log(θ), log(L), log(Y ), log(|A|), and log(z).

Table 4 The Mobrun anomaly, Canada. Singular values and their
variabilities in percentage of the sensitivity matrix, which was
calculated from the initial guess shown at the top panel of Fig. 10

Singular values Variability in percentage

19.7 97.73

0.394 1.96

0.044 0.22

0.0171 0.085

0.0019 0.0094

This panel shows that the components pertinent to the
parameters log(L), log(Y ), and log(|A|) have a compara-
ble magnitude, which conforms with the sensitivity curves
(of these three parameters) shown at the bottom panel
of Fig. 10. Furthermore, the middle and bottom panels
of Fig. 13 also reveal that the components pertinent to
the parameters log(L) and log(Y ) have nearly a similar
magnitude.

The Camaguey Province anomaly, Cuba
Inverse results
Davis et al. (1957) carried out detailed gravity surveys in

the Camaguey Province, Cuba, for chromite exploration.
Residual gravity maps were collected over various spatially
distributed ore bodies for determining approximately the
quantity of chromite in any deposits found. In this paper,
a profile from this area is inverted and interpreted. This
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Fig. 12 The Mobrun anomaly, Canada. Parameter eigenvectors corresponding to the first three singular values (denoted by s) (see the text for
details) calculated from the singular value decomposition (SVD) analysis carried out on the Fréchet matrix of the initial guess shown at the top panel
of Fig. 10. Left panels: parameter eigenvectors in linear scale. Right panels: parameter eigenvectors’ absolute values in log scale

profile is taken normal to the strike of the residual gravity
anomaly shown in the middle part of Fig. 6 of Davis et al.
(1957).
This gravity profile is associated with the largest

chromite deposit found in the province (Davis et al. 1957).

Table 5 The Mobrun anomaly, Canada. Singular values and their
variabilities in percentage of the sensitivity matrix, which was
obtained from “Equivalent Model 1” shown at the bottom panel
of Fig. 10

Singular values Variability in percentage

244.78 96.76

6.78 2.68

1.06 0.42

0.33 0.13

0.03 0.013

This prominent profile has a trend of S60oW to N60oE
and overlies a chromite ore body which contains about
115,000 tons, dips steeply to the southwest, and comes
within 3 m of the ground surface (Davis et al. 1957).
We have run the inversion using a number of various

initial guesses to see the most common inverse solution.
The top, middle, and bottom panels (which have identi-
cal observed data and point curves) of Fig. 14 show the
three approximative solution sets yielded from three dif-
ferent initial guesses. A normalized misfit of about 7.56 %
was reached in all cases. Set 1 has a solution of z = 5.5
m, L = 40 m, A = 6989 kg/m2, 2Y (strike length) = 60 m,
θ = 93◦, and t = 4.7 m using an α of 10−4. Set 2 has a
solution of z = 6.2 m, L = 29.5 m, A = 7647 kg/m2, 2Y
= 82 m, θ = 94◦, and t = 5 m using an α of 10−6. Set 3
has a solution of z = 6.5 m, L = 29.8 m, A = 7979 kg/m2,
2Y = 72 m, θ = 94◦, and t = 5.3 m using an α of 10−6. It
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Fig. 13 The Mobrun anomaly, Canada. Parameter eigenvectors corresponding to the first three singular values (see the text for details) calculated
from the SVD of the Fréchet matrix of “Equivalent Model 1” presented at the bottom panel of Fig. 10. Left panels: parameter eigenvectors in linear
scale. Right panels: parameter eigenvectors’ absolute values in log scale

is seen that the approximative solutions of the parameters
L and Y of Set 1 and Set 2 are nearly swapped. This is
readily attributed to the non-uniqueness nature (solution
equivalence) of this inverse problem—these two solutions
(Set 1 and Set 2) are so-called here “Equivalent Model
1” and “Equivalent Model 2”. It appears that the com-
mon solution is the one that is shown in Set 2 and Set 3.
The depth shown in all sets is in a reasonable agreement
with that obtained from drilling. Table 6 summarizes all
inversion results.
The top panel of Fig. 15 illustrates the sensitivities (abso-

lute values) calculated from the initial guess (shown at
the top panel of Fig. 14) from which “Equivalent Model
1” was produced. The sensitivities (absolute values, too)
of the inverse parameters of “Equivalent Model 1” (shown

too at the top panel of Fig. 14) are illustrated in the bot-
tom panel of Fig. 15. The corresponding sensitivities of
“Equivalent Model 2”, and its initial guess (both are shown
at the middle panel of Fig. 14) are rendered in Fig. 16.
The sensitivity of the inverse parameters log(L), log(Y ),

and log(|A|) of “Equivalent Model 1” and “Equivalent
Model 2” are found positive real number for this profile.
The bottom panels of Figs. 15 and 16 show that these
three parameters have quasi-similar behavior and form—
this is consistent with the pertinent findings reported for
the Mobrun anomaly, Canada (see the bottom panels of
Figs. 10 and 11).
Sensitivity analysis
Table 7 shows the singular values and their variabilities

(in percentage) of the sensitivity matrix shown at the
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Fig. 14 The Camaguey Province anomaly, Cuba. Residual gravity anomaly (redrawn from Figure 6 of Davis et al. 1957): inversion results retrieved
from three various initial guesses

top panel of Fig. 15. This table shows that most of the
variability (79.1 %) is captured by the first right singu-
lar vector. Figure 17 illustrates the various components of
the first three singular vectors. The top left panel shows
that the parameter log(θ) has the most dominant effect
as was observed, too, in “The Mobrun anomaly, Canada”

subsection. The top right panel shows that the order of
the importance of parameters (for this particular model
parameter set) is as follows: log(θ), log(|A|), log(z), log(L),
and log(Y ). This panel as well as the middle and bottom
panels show that the components of all parameters have
diverse magnitudes.

Table 6 The Camaguey Province anomaly, Cuba. Tabulated inversion results

Misfit % α
Initial guess Inverse solution

z (m) L (m) Y (m) A (kg/m2) θ (degrees) z (m) L (m) Y (m) A (kg/m2) θ (degrees)

7.56 10−4 100 200 300 20,000 30 6 40 30 6990 94

7.56 10−6 50 350 300 10,000 120 6 30 42 7647 94

7.56 10−6 75 20 20 15,000 10 7 30 36 7980 94
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Fig. 15 The Camaguey Province anomaly, Cuba. Sensitivity pertinent to this profile’s “Equivalent Model 1” and its initial guess (both are shown at the
top panel of Fig. 14), see the text for more details. Top panel: sensitivities calculated from the initial guess. Bottom panel: sensitivities calculated from
“Equivalent Model 1”

Table 8 shows the singular values and their vari-
abilities of the sensitivity matrix shown at the bottom
panel of Fig. 15. This table shows that most of the
variability (96.9 %) is held by the first right singu-
lar vector. Figure 18 illustrates the various components
of the first three singular vectors. The top left panel
shows that the parameter log(θ) has the most domi-
nant effect as was observed earlier. The top right panel
shows that the order of the importance of parame-
ters (for this particular model parameter set) is as fol-
lows: log(θ), log(|A|), log(L), log(Y ), and log(z). This
panel and the middle and bottom panels show that
the components of all parameters have comparable
magnitudes.
The SVD analysis presented herein revealed that the

parameter log(θ) has the highest importance in this

inverse scheme. All field examples, carefully analyzed
here, have shown that the parameter θ is determined very
accurately (based on drilling information), and that this
parameter is the least affected by the initial guess selec-
tion and the misfit stopping criteria. It is worthy to note
that accurate determination of the amount and direction
of dip (θ ) of the buried target can be of a paramount
importance for effective decision making on directional
drilling.
On the basis of the inversion results of the two

investigated field examples, it can be concluded that the
model parameter which can be estimated from the devel-
oped method with the greatest accuracy is θ . The param-
eters z, A, L, and Y can be determined with an acceptable
accuracy, especially when the gravity response is due to an
isolated body.
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Fig. 16 The Camaguey Province anomaly, Cuba. Sensitivity pertinent to this profile’s “Equivalent Model 2” and its initial guess (both are shown at the
middle panel of Fig. 14), see the text for more details. Top panel: sensitivities calculated from the initial guess. Bottom panel: sensitivities calculated
from “Equivalent Model 2”

Discussion
Gravity inversions based on regular models remain of
interest in exploration geophysics (see for example, Biswas
2015, and the references therein). It is worthy to note
that it is very rare to find a geologic target that is truly

Table 7 The Camaguey Province anomaly, Cuba. Singular values
and their variabilities in percentage of the sensitivity matrix,
which was calculated from the initial guess shown at the top
panel of Fig. 15

Singular values Variability in percentage

8.22 79.1

2.12 20.4

0.049 0.47

0.0006 0.0055

0.0002 0.0020

regular body. Nevertheless, these regular models often
yield a first approximation solution, which is sometimes
quite adequate (e.g., Abdelrahman et al. 1989; Mehanee
2014a).
As indicated in the “Background” section, although a

geologic simplification, 3D thin-sheet model (the subject
of this paper) is a good approximation to a prismatic
structure (e.g., a dike or an ore vein) unless the thickness
is somewhat greater than the depth to the top (Telford
et al. 1976). Thin-sheet inverse schemes are favored
for their quickness and inexpensive computational cost
(Holstein et al. 2010) but have much reduced applica-
bility compared to 3D rigorous inversions (e.g., Li and
Oldenburg 1998; Zhdanov et al. 2004). The scheme devel-
oped in our paper is useful in exploration geophysics
and applicable:
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Fig. 17 The Camaguey Province anomaly, Cuba. Parameter eigenvectors corresponding to the first three singular values (denoted by s) (see the text
for details) calculated from the SVD analysis carried out on the Fréchet matrix of the initial guess shown at the top panel of Fig. 15. Left panels:
parameter eigenvectors in linear scale. Right panels: parameter eigenvectors’ absolute values in log scale

1. For reconnaissance analysis and pilot studies (for first
approximative interpretation) in geophysical
prospecting prior to conducting large-scale gravity
data surveys,

2. For comparative and ambiguity studies and joint

Table 8 The Camaguey Province anomaly, Cuba. Singular values
and their variabilities in percentage of the sensitivity matrix,
which was calculated from “Equivalent Model 1” shown at the
bottom panel of Fig. 15

Singular values Variability in percentage

33.66 96.88

0.861 2.48

0.18 0.52

0.038 0.111

0.0033 0.009

(e.g., gravity and magnetic data) inversion in order to
minimize the non-uniqueness that is imperative
here, and

3. For integrated and unequivocal interpretation. For
example, this scheme can determine the amount and
direction of dip of the buried target with greatest
accuracy (as seen in the investigated inversions of the
noisy numerical data and the field examples), which
was confirmed by the sensitivity analysis carried out
in our paper.

This scheme is complimentary not contradictory to
the existing interpretation methods. For example, the
approximative inverse solution evolved from the thin-
sheet inverse scheme can be used to build a reasonable
initial guess for the rigorous 3D gravity inverse schemes.
Note that a reasonable initial guess is a prerequisite for the
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Fig. 18 The Camaguey Province anomaly, Cuba. Parameter eigenvectors corresponding to the first three singular values (see the text for details)
calculated from the SVD of the Fréchet matrix of “Equivalent Model 1” presented at the bottom panel of Fig. 15. Left panels: parameter eigenvectors
in linear scale. Right panels: parameter eigenvectors’ absolute values in log scale

rigorous 3D gravity inverse schemes. It is emphasized that
we are not claiming that inversion schemes based on geo-
metrically simple bodies replace the rigorous 3D gravity
inverse schemes.
Rigorous 3D gravity inversion schemes (e.g., Li and

Oldenburg 1998; Zhdanov et al. 2004) can simultaneously
invert for several anomalous irregular bodies and nor-
mally require areal data coverage. However, these schemes
take much longer computation time (than the thin-sheet
schemes) in order to yield the approximative inverse solu-
tion (that is also non-unique), which comprises the 3D
anomalous density distribution (�ρ) in the subsurface.
As indicated above, a reasonable initial guess is a prereq-
uisite in the rigorous 3D gravity inverse schemes. These
rigorous 3D schemes can generate smooth or focused
(compact) inverse images (depending primarily upon the
particular objective of the interpretation) by incorporat-
ing the appropriate type of the stabilizer in the objective

functional subject to minimization. It is relevant to note
that the inversion of focused (compact) images requires
accurate information about the lower and upper bounds
of the anomalous density distribution (�ρ) of the buried
targets.
Upon the completion of the gravity data acquisition and

processing for an area, the following interpretation steps
(e.g., Grant and West 1965; Hinze et al. 2013) are applied
in order to estimate the characteristic parameters of a
buried target:
First, contour the measured residual gravity data

(regardless whether these data were acquired in a
disordered or an ordered pattern). Second, examine the
obtained contourmap, and identify the strike of the buried
target (Hinze et al. 2013). Third, take a profile traversing
the center of the target and normal to the target’s strike
direction (e.g., Hinze et al. 2013). Fourth, under the thin-
sheet assumption, invert this profile by the 2.5D scheme
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developed here using several initial guesses. This will
give first approximate interpretation about the underly-
ing body. The value of the parameter θ (which determines
the amount and direction of dip of the buried body) will
be the most accurate (see column 12 of Tables 3 and 6)
as confirmed from the numerical models, filed examples,
and the sensitivity analysis. The obtained inverse solutions
should be interpreted in an integrated manner with all
available geological and geophysical information.
Grouping the density contrast (�ρ) and thickness (t) of

a 3D dipping thin-sheet body into a single inverse param-
eter A (A = �ρ t) was essentially carried out because
both of them appear only as a multiplicative combination.
This grouping was done in order to help minimize the
non-uniqueness nature of this particular inverse problem.
Unfortunately, the rest of the inverse parameters (z, L,Y ,
and θ ) we seek to recover from inversion are present fre-
quently at various terms within formula (1) and are mul-
tiplicative (that is, they are coupled). Therefore, grouping
any of these parameters (z, L,Y , and θ ) is not really help-
ful in eliminating or mitigating the non-uniqueness of this
inverse problem.
The particular 2.5D inverse problem developed here is

non-unique as has been seen, thus it is ill-posed. A way
of solving an ill-posed problem is via the use of regular-
ization (Gribok et al. 2002; Tikhonov and Arsenin 1977).
Regularization is required here for a number of reasons:
First, in order to help the minimizer combat the entrap-
ment in a local minimum. This can be accomplished by
attempting various values for the regularization parameter
in the scheme when inverting a gravity data set using an
initial guess (see, for example, Fig. 8 and Table 3). Second,
in order to find possible equivalent approximative solu-
tions to understand better the non-uniqueness nature of
this particular inverse problem, and thus to interpret these
solutions in an integrated manner with the available geo-
logical, geophysical, and drilling data. Third, in order to
make it possible to incorporate some a priori information,
if available, in the stabilizer of the objective functional
subject to minimization, which can help minimize the
non-uniqueness nature of this inverse problem. The regu-
larization parameter α is chosen such that it makes some
balance between the misfit functional term and stabilizer
(see, e.g., Li and Oldenburg 2003; Mehanee 2014b, and the
references therein).
The inherent non-uniqueness of this inverse problem

and the errors in the residual gravity data lead to the
existence of equivalent solutions. If approximate prior
knowledge on one of the target’s parameters (e.g., exten-
sion in depth L) is known, then we can incorporate this a
priori information in the stabilizer of the objective func-
tional. This could reduce the equivalence problem. It is
notmere coincidence that the results obtained here for the
two investigated field data examples have been found in

some conformity with those confirmed by drilling. There-
fore, the inverse scheme developed here can have great
potential in exploration and mining geophysics for an
isolated target described by a 3D thin-sheet type model.

Conclusions
We have developed an efficient regularized iterative 2.5D
inversion scheme for the interpretation of a residual grav-
ity profile measured over a dipping thin-sheet like tar-
get. The scheme determines the characteristic parameters
(depth to top z, amount and direction of dip θ , exten-
sion in depth L, finite strike extension 2Y , and amplitude
coefficient A from which the thickness t is obtained) of
a buried target. The algorithm of the scheme solves for
the inverse parameters of a model in the space of their
logarithms. This is advantageous for a number of rea-
sons: First, in order to maintain the convergence of the
objective functional subject to minimization. Second, in
order to impose the positivity of the model parameters
we seek, and hence, to produce realistic and meaningful
inversion results. Third, in order to balance the Jacobian
terms and to make the sensitivity derivatives dimension-
ally the same. It has been shown that this new scheme is
advantageous in terms of computational efficiency, stabil-
ity, and convergence than the existing schemes that solve
for the characteristic inverse parameters of a sheet/dike
model from gravity data inversions.
Before applying the method to real data examples, it has

been successfully verified on noise-free numerical exam-
ples; it has recovered the actual model parameters. After
that, the approach was assessed on noisy numerical data,
and it is found stable and can estimate the parameters
of the buried deposit with acceptable accuracy. However,
some of the inverse parameters encountered some inac-
curacy when the method was applied to residual data
distorted, in terms of both magnitude and shape, by
some significant neighboring gravity effects generated by
nearby anomalous bodies.
The validity of the technique for practical applications

has been successfully illustrated on two real field exam-
ples with various geologic settings and complexities from
mineral exploration. The estimated inverse parameters of
the investigated real data are found to generally conform
well with those yielded from drilling.
The sensitivity analysis carried out on the Jacobian

matrices of the field examples investigated here has shown
that the parameter that can be determined with the great-
est accuracy is θ (as confirmed from drilling information).
Accurate determination of the amount and direction of
dip (θ ) of the buried target can be of a paramount impor-
tance for effective decision-making on directional drilling.
The parameters z, L, Y, and A can be estimated with
acceptable accuracy, especially the parameters z and A.
Real data inversions have shown that the parameter θ is
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the least affected by the choice of the initial guess and the
misfit stopping criteria.
The developed inversion scheme is useful in explo-

ration programs and reconnaissance studies intended to
delineate and map, for example, ore veins from resid-
ual gravity data. However, it can produce a non-unique
inverse solution; a fact which should be kept inmind when
interpreting the obtained approximative inverse solutions.
Therefore, these equivalent solutions, as always, should
be guided by geological information and other avail-
able geophysical results to help resolve any encountered
non-uniqueness, which is not unusual in exploration geo-
physics. The non-uniqueness analysis and the tabulated
inverse results presented here have shown that the param-
eters that are most affected by the non-uniqueness, the
choice of the initial guess, and the misfit value of the
stopping criteria are L and Y.
Simultaneous inversion of 3D dipping thin-sheet-like

multi-bodies will be the subject of future research.
The gravity signature due to a buried target depends

upon the density contrast among the other characteris-
tic parameters (e.g., extension in depth and extension in
the strike direction) of the buried target. The density con-
trast between the ore body and the country rock can be in
some cases much smaller than the magnetic susceptibil-
ity contrast. Therefore, the buried target in this case may
generate a more prominent magnetic signature than the
gravimetric one. Thus, the magnetic method, in this case,
could be of a more value than the gravity method. There-
fore, the 2.5D inversion scheme developed here could also
be extended and useful in the interpretation of magnetic
data.

Appendix
Appendix 1 Gauss-Newton (GN) method
The computational steps of the GN method are summa-
rized as (e.g., Menke 2012; Zhdanov 2002):

Rn = G̃(m̃n) − g◦ = G(mn) − g◦

l̃n = F̃T
n Rn + α m̃n

H̃n = (̃FT
n F̃n + α I)

δ̃mn = H̃−1
n l̃n

m̃n+1 = m̃n − δ̃mn,

(10)

where m̃n is the column vector of the model parameters
at iteration n; m̃n =[ log(|An|), log(zn), log(Yn), log(Ln),
log(θn)]T ; T is the transpose operator; Rn is the column
vector of the difference between the predicted (G(mn))
and observed (g◦) gravity data sets at iteration n; F̃n is the
Fréchet (Jacobian) matrix (Menke 2012; Tarantola 1987;
2005) computed at iteration n with respect to the log of
the model parameters; α is the regularization parameter;
δ̃mn is the model parameters update at iteration n; l̃n is

the direction of the steepest ascent computed at iteration
n; and I and H are the identity and Hessian matrices.

Appendix 2: Steepest descent (SD) method
The computational steps of the SD method (Menke 2012;
Zhdanov 2002) are summarized as:

Rn = G̃(m̃n) − g◦ = G(mn) − g◦

l̃n = F̃T
n Rn + α m̃n

m̃n+1 = m̃n + δ̃mn = m̃n − ζn l̃n,

(11)

where ζn is the step length which is given by:

ζn =
∥∥∥ l̃n ∥∥∥2∥∥∥F̃n l̃n

∥∥∥2 + α

∥∥∥ l̃n ∥∥∥2 . (12)
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