9 research outputs found

    A unified approach to quantifying algorithmic unfairness: Measuring individual & group unfairness via inequality indices

    Get PDF
    Discrimination via algorithmic decision making has received considerable attention. Prior work largely focuses on defining conditions for fairness, but does not define satisfactory measures of algorithmic unfairness. In this paper, we focus on the following question: Given two unfair algorithms, how should we determine which of the two is more unfair? Our core idea is to use existing inequality indices from economics to measure how unequally the outcomes of an algorithm benefit different individuals or groups in a population. Our work offers a justified and general framework to compare and contrast the (un)fairness of algorithmic predictors. This unifying approach enables us to quantify unfairness both at the individual and the group level. Further, our work reveals overlooked tradeoffs between different fairness notions: using our proposed measures, the overall individual-level unfairness of an algorithm can be decomposed into a between-group and a within-group component. Earlier methods are typically designed to tackle only between-group unfairness, which may be justified for legal or other reasons. However, we demonstrate that minimizing exclusively the between-group component may, in fact, increase the within-group, and hence the overall unfairness. We characterize and illustrate the tradeoffs between our measures of (un)fairness and the prediction accuracy

    Fairness in Algorithmic Decision Making: An Excursion Through the Lens of Causality

    Full text link
    As virtually all aspects of our lives are increasingly impacted by algorithmic decision making systems, it is incumbent upon us as a society to ensure such systems do not become instruments of unfair discrimination on the basis of gender, race, ethnicity, religion, etc. We consider the problem of determining whether the decisions made by such systems are discriminatory, through the lens of causal models. We introduce two definitions of group fairness grounded in causality: fair on average causal effect (FACE), and fair on average causal effect on the treated (FACT). We use the Rubin-Neyman potential outcomes framework for the analysis of cause-effect relationships to robustly estimate FACE and FACT. We demonstrate the effectiveness of our proposed approach on synthetic data. Our analyses of two real-world data sets, the Adult income data set from the UCI repository (with gender as the protected attribute), and the NYC Stop and Frisk data set (with race as the protected attribute), show that the evidence of discrimination obtained by FACE and FACT, or lack thereof, is often in agreement with the findings from other studies. We further show that FACT, being somewhat more nuanced compared to FACE, can yield findings of discrimination that differ from those obtained using FACE.Comment: 7 pages, 2 figures, 2 tables.To appear in Proceedings of the International Conference on World Wide Web (WWW), 201

    LiFT: A Scalable Framework for Measuring Fairness in ML Applications

    Full text link
    Many internet applications are powered by machine learned models, which are usually trained on labeled datasets obtained through either implicit / explicit user feedback signals or human judgments. Since societal biases may be present in the generation of such datasets, it is possible for the trained models to be biased, thereby resulting in potential discrimination and harms for disadvantaged groups. Motivated by the need for understanding and addressing algorithmic bias in web-scale ML systems and the limitations of existing fairness toolkits, we present the LinkedIn Fairness Toolkit (LiFT), a framework for scalable computation of fairness metrics as part of large ML systems. We highlight the key requirements in deployed settings, and present the design of our fairness measurement system. We discuss the challenges encountered in incorporating fairness tools in practice and the lessons learned during deployment at LinkedIn. Finally, we provide open problems based on practical experience.Comment: Accepted for publication in CIKM 202

    Beyond Distributive Fairness in Algorithmic Decision Making: Feature Selection for Procedurally Fair Learning

    No full text
    With widespread use of machine learning methods in numerous domains involving humans, several studies have raised questions about the potential for unfairness towards certain individuals or groups. A number of recent works have proposed methods to measure and eliminate unfairness from machine learning models. However, most of this work has focused on only one dimension of fair decision making: distributive fairness, i.e., the fairness of the decision outcomes. In this work, we leverage the rich literature on organizational justice and focus on another dimension of fair decision making: procedural fairness, i.e., the fairness of the decision making process. We propose measures for procedural fairness that consider the input features used in the decision process, and evaluate the moral judgments of humans regarding the use of these features. We operationalize these measures on two real world datasets using human surveys on the Amazon Mechanical Turk (AMT) platform, demonstrating that our measures capture important properties of procedurally fair decision making. We provide fast submodular mechanisms to optimize the tradeoff between procedural fairness and prediction accuracy. On our datasets, we observe empirically that procedural fairness may be achieved with little cost to outcome fairness, but that some loss of accuracy is unavoidable

    An Empirical Study on Learning Fairness Metrics for {COMPAS} Data with Human Supervision

    No full text
    The notion of individual fairness requires that similar people receive similar treatment. However, this is hard to achieve in practice since it is difficult to specify the appropriate similarity metric. In this work, we attempt to learn such similarity metric from human annotated data. We gather a new dataset of human judgments on a criminal recidivism prediction (COMPAS) task. By assuming the human supervision obeys the principle of individual fairness, we leverage prior work on metric learning, evaluate the performance of several metric learning methods on our dataset, and show that the learned metrics outperform the Euclidean and Precision metric under various criteria. We do not provide a way to directly learn a similarity metric satisfying the individual fairness, but to provide an empirical study on how to derive the similarity metric from human supervisors, then future work can use this as a tool to understand human supervision

    An Empirical Study on Learning Fairness Metrics for COMPAS Data with Human Supervision

    No full text
    The notion of individual fairness requires that similar people receive similar treatment. However, this is hard to achieve in practice since it is difficult to specify the appropriate similarity metric. In this work, we attempt to learn such similarity metric from human annotated data. We gather a new dataset of human judgments on a criminal recidivism prediction (COMPAS) task. By assuming the human supervision obeys the principle of individual fairness, we leverage prior work on metric learning, evaluate the performance of several metric learning methods on our dataset, and show that the learned metrics outperform the Euclidean and Precision metric under various criteria. We do not provide a way to directly learn a similarity metric satisfying the individual fairness, but to provide an empirical study on how to derive the similarity metric from human supervisors, then future work can use this as a tool to understand human supervision

    A Unified Approach to Quantifying Algorithmic Unfairness: Measuring Individual & Group Unfairness via Inequality Indices

    No full text
    Discrimination via algorithmic decision making has received considerable attention. Prior work largely focuses on defining conditions for fairness, but does not define satisfactory measures of algorithmic unfairness. In this paper, we focus on the following question: Given two unfair algorithms, how should we determine which of the two is more unfair? Our core idea is to use existing inequality indices from economics to measure how unequally the outcomes of an algorithm benefit different individuals or groups in a population. Our work offers a justified and general framework to compare and contrast the (un)fairness of algorithmic predictors. This unifying approach enables us to quantify unfairness both at the individual and the group level. Further, our work reveals overlooked tradeoffs between different fairness notions: using our proposed measures, the overall individual-level unfairness of an algorithm can be decomposed into a between-group and a within-group component. Earlier methods are typically designed to tackle only between-group unfairness, which may be justified for legal or other reasons. However, we demonstrate that minimizing exclusively the between-group component may, in fact, increase the within-group, and hence the overall unfairness. We characterize and illustrate the tradeoffs between our measures of (un)fairness and the prediction accuracy
    corecore