77 research outputs found

    Efeitos agudos da restrição de tirosina e fenilalanina sobre o humor e a atenção em voluntários normais

    Get PDF
    O presente estudo avaliou os efeitos da Restrição Aguda de Fenilalanina e Tirosina (RAFT) sobre o hmnor e o desempenho cognitivo em voluntários normais. Foi utilizada uma amostra de 10 voluntários normais, do sexo masculino. O delineamento empregado foi o de um ensaio clínico randomizado, duplo-cego, placebo-controlado e cruzado. O voluntário recebia em duas oportunidades um coquetel de aminoácidos que poderia ser um coquetel balanceado com todos os aminoácidos (coquetel placebo) ou um coquetel com todos os aminoácidos excetuando-se a fenilalanina e a tirosina (coquetel ativo). Antes da ingestão do coquetel e 5 horas após cada ingestão do coquetel o voluntário era avaliado por testes que mensuravam seu estado de humor e desempenho cognitivo (atenção). Os resultados mostraram que a RAFT possui capacidade de diminuir de fonna significativa o nível plasmático de tirosina (p<0,02). Em relação à variação aguda no humor, houve diferença estatisticamente significativa (P=0,024) nos escores das Escalas POMS no seu eixo I que mede a dimensão tranqüilo-ansioso demonstrando que os voluntários que fizeram uso do coquetel ativo apresentaram maiores escores no polo de ansiedade. Na escala de Lader não houve diferenças significativas quando os voluntários usaram coquetel placebo ou coquetel ativo. Em relação ao desempenho cognitivo, a RAFT não induziu alterações nos Testes de Atenção dos Dígitos de Hebb, Blocos de Corsi, Teste de Cancelamento de Mesulan ou no Teste de figuras de Aggie. Por outro lado, a RAFT induziu alterações estatisticamente significativas (p=0,026) no sub-ítem de reconhecimento B do Teste de Aprendizado Auditivo de Rey. Os achados do presente estudo apontam na direção de que a diminuição aguda no precursor catecolaminérgico pode aumentar os níveis de ansiedade e reduzir a atenção em voluntários normais.The present study evaluates the effects of acute phenylalanine and tyrosine depletion (PTD) on mood and cognitive perfonnance. The sample comprised of 12 males volunteers. The design was a randomized, doubleblind, placebo-controlled and cross-over clinical trial. On both days volunteers were given a drink of aminoacids, which could be one consisting of a mixture of all amino acids (placebo drink) or a drink containing all the aminoacids apart from fenylalanine and tyrosine (active drink). Before of the drink ingestion and five hours after taking each drink, the volunteers underwent tests on mood and cognitive performance. The results showed that PTD can significantly reduce the tyrosine plasmatic level (P<0,02). Concerning acute variation on mood, there was statistical significance (P=0,024) on the axis I POMS rating scale (this axis measure a composed-anxious dimention) showed that volunteers took the active drink had higher anxiety levels. Regarding to the Lader mood scale there was no statistically significant differences in the scores obtained among the placebo and active drinkers group. As to the cognitive tests, PTD did not cause change in performance of volunteers in Hebb test, Corsi blocks, mesulan test or Aggie figures learning test. The results obtained at Rey auditory verval learning test showed statistical significante impairemet at the active group only at the Rey recognition B (P=0,026). The study findings show that acute decrease in the catecolamine precursor affects mood, incrising anxiety scores, and decrease atention scores in same cognitives test

    Consortium neuroscience of attention deficit/hyperactivity disorder and autism spectrum disorder : the ENIGMA adventure

    Get PDF
    Neuroimaging has been extensively used to study brain structure and function in individuals with attention deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) over the past decades. Two of the main shortcomings of the neuroimaging literature of these disorders are the small sample sizes employed and the heterogeneity of methods used. In 2013 and 2014, the ENIGMA-ADHD and ENIGMA-ASD working groups were respectively, founded with a common goal to address these limitations. Here, we provide a narrative review of the thus far completed and still ongoing projects of these working groups. Due to an implicitly hierarchical psychiatric diagnostic classification system, the fields of ADHD and ASD have developed largely in isolation, despite the considerable overlap in the occurrence of the disorders. The collaboration between the ENIGMA-ADHD and -ASD working groups seeks to bring the neuroimaging efforts of the two disorders closer together. The outcomes of case–control studies of subcortical and cortical structures showed that subcortical volumes are similarly affected in ASD and ADHD, albeit with small effect sizes. Cortical analyses identified unique differences in each disorder, but also considerable overlap between the two, specifically in cortical thickness. Ongoing work is examining alternative research questions, such as brain laterality, prediction of case–control status, and anatomical heterogeneity. In brief, great strides have been made toward fulfilling the aims of the ENIGMA collaborations, while new ideas and follow-up analyses continue that include more imaging modalities (diffusion MRI and resting-state functional MRI), collaborations with other large databases, and samples with dual diagnoses

    Analysis of structural brain asymmetries in attention-deficit/hyperactivity disorder in 39 datasets

    Get PDF
    Objective: Some studies have suggested alterations of structural brain asymmetry in attention-deficit/hyperactivity disorder (ADHD), but findings have been contradictory and based on small samples. Here, we performed the largest ever analysis of brain left-right asymmetry in ADHD, using 39 datasets of the ENIGMA consortium. Methods: We analyzed asymmetry of subcortical and cerebral cortical structures in up to 1,933 people with ADHD and 1,829 unaffected controls. Asymmetry Indexes (AIs) were calculated per participant for each bilaterally paired measure, and linear mixed effects modeling was applied separately in children, adolescents, adults, and the total sample, to test exhaustively for potential associations of ADHD with structural brain asymmetries. Results: There was no evidence for altered caudate nucleus asymmetry in ADHD, in contrast to prior literature. In children, there was less rightward asymmetry of the total hemispheric surface area compared to controls (t = 2.1, p = .04). Lower rightward asymmetry of medial orbitofrontal cortex surface area in ADHD (t = 2.7, p = .01) was similar to a recent finding for autism spectrum disorder. There were also some differences in cortical thickness asymmetry across age groups. In adults with ADHD, globus pallidus asymmetry was altered compared to those without ADHD. However, all effects were small (Cohen's d from -0.18 to 0.18) and would not survive study-wide correction for multiple testing. Conclusion: Prior studies of altered structural brain asymmetry in ADHD were likely underpowered to detect the small effects reported here. Altered structural asymmetry is unlikely to provide a useful biomarker for ADHD, but may provide neurobiological insights into the trait

    Dissecting the shared genetic architecture of suicide attempt, psychiatric disorders, and known risk factors

    Get PDF
    Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders

    Characterizing neuroanatomic heterogeneity in people with and without ADHD based on subcortical brain volumes

    Get PDF
    Background: Attention-deficit/hyperactivity disorder (ADHD) is a prevalent neurodevelopmental disorder. Neuroanatomic heterogeneity limits our understanding of ADHD's etiology. This study aimed to parse heterogeneity of ADHD and to determine whether patient subgroups could be discerned based on subcortical brain volumes. Methods: Using the large ENIGMA-ADHD Working Group dataset, four subsamples of 993 boys with and without ADHD and to subsamples of 653 adult men, 400 girls, and 447 women were included in analyses. We applied exploratory factor analysis (EFA) to seven subcortical volumes in order to constrain the complexity of the input variables and ensure more stable clustering results. Factor scores derived from the EFA were used to build networks. A community detection (CD) algorithm clustered participants into subgroups based on the networks. Results: Exploratory factor analysis revealed three factors (basal ganglia, limbic system, and thalamus) in boys and men with and without ADHD. Factor structures for girls and women differed from those in males. Given sample size considerations, we concentrated subsequent analyses on males. Male participants could be separated into four communities, of which one was absent in healthy men. Significant case-control differences of subcortical volumes were observed within communities in boys, often with stronger effect sizes compared to the entire sample. As in the entire sample, none were observed in men. Affected men in two of the communities presented comorbidities more frequently than those in other communities. There were no significant differences in ADHD symptom severity, IQ, and medication use between communities in either boys or men. Conclusions: Our results indicate that neuroanatomic heterogeneity in subcortical volumes exists, irrespective of ADHD diagnosis. Effect sizes of case-control differences appear more pronounced at least in some of the subgroups

    Risk variants and polygenic architecture of disruptive behavior disorders in the context of attention-deficit/hyperactivity disorder

    Get PDF
    Attention-Deficit/Hyperactivity Disorder (ADHD) is a childhood psychiatric disorder often comorbid with disruptive behavior disorders (DBDs). Here, we report a GWAS meta-analysis of ADHD comorbid with DBDs (ADHD + DBDs) including 3802 cases and 31,305 controls. We identify three genome-wide significant loci on chromosomes 1, 7, and 11. A meta-analysis including a Chinese cohort supports that the locus on chromosome 11 is a strong risk locus for ADHD + DBDs across European and Chinese ancestries (rs7118422, P = 3.15×10−10, OR = 1.17). We find a higher SNP heritability for ADHD + DBDs (h2SNP = 0.34) when compared to ADHD without DBDs (h2SNP = 0.20), high genetic correlations between ADHD + DBDs and aggressive (rg = 0.81) and anti-social behaviors (rg = 0.82), and an increased burden (polygenic score) of variants associated with ADHD and aggression in ADHD + DBDs compared to ADHD without DBDs. Our results suggest an increased load of common risk variants in ADHD + DBDs compared to ADHD without DBDs, which in part can be explained by variants associated with aggressive behavior

    Shared genetic background between children and adults with attention deficit/hyperactivity disorder

    Get PDF
    Attention deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder characterized by age-inappropriate symptoms of inattention, impulsivity, and hyperactivity that persist into adulthood in the majority of the diagnosed children. Despite several risk factors during childhood predicting the persistence of ADHD symptoms into adulthood, the genetic architecture underlying the trajectory of ADHD over time is still unclear. We set out to study the contribution of common genetic variants to the risk for ADHD across the lifespan by conducting meta-analyses of genome-wide association studies on persistent ADHD in adults and ADHD in childhood separately and jointly, and by comparing the genetic background between them in a total sample of 17,149 cases and 32,411 controls. Our results show nine new independent loci and support a shared contribution of common genetic variants to ADHD in children and adults. No subgroup heterogeneity was observed among children, while this group consists of future remitting and persistent individuals. We report similar patterns of genetic correlation of ADHD with other ADHD-related datasets and different traits and disorders among adults, children, and when combining both groups. These findings confirm that persistent ADHD in adults is a neurodevelopmental disorder and extend the existing hypothesis of a shared genetic architecture underlying ADHD and different traits to a lifespan perspectiv

    Exome chip analyses in adult attention deficit hyperactivity disorder

    Get PDF
    Attention-deficit/hyperactivity disorder (ADHD) is a highly heritable childhood-onset neuropsychiatric condition, often persisting into adulthood. The genetic architecture of ADHD, particularly in adults, is largely unknown. We performed an exome-wide scan of adult ADHD using the Illumina Human Exome Bead Chip, which interrogates over 250 000 common and rare variants. Participants were recruited by the International Multicenter persistent ADHD CollaboraTion (IMpACT). Statistical analyses were divided into 3 steps: (1) gene-level analysis of rare variants (minor allele frequency (MAF)o1%); (2) single marker association tests of common variants (MAF⩾1%), with replication of the top signals; and (3) pathway analyses. In total, 9365 individuals (1846 cases and 7519 controls) were examined. Replication of the most associated common variants was attempted in 9847 individuals (2077 cases and 7770 controls) using fixed-effects inverse variance meta-analysis. With a Bonferroni-corrected significance level of 1.82E − 06, our analyses of rare coding variants revealed four study-wide significant loci: 6q22.1 locus (P = 4.46E − 08), where NT5DC1 and COL10A1 reside; the SEC23IP locus (P = 6.47E − 07); the PSD locus (P = 7.58E − 08) and ZCCHC4 locus (P = 1.79E − 06). No genome-wide significant association was observed among the common variants. The strongest signal was noted at rs9325032 in PPP2R2B (odds ratio = 0.81, P = 1.61E − 05). Taken together, our data add to the growing evidence of general signal transduction molecules (NT5DC1, PSD, SEC23IP and ZCCHC4) having an important role in the etiology of ADHD. Although the biological implications of these findings need to be further explored, they highlight the possible role of cellular communication as a potential core component in the development of both adult and childhood forms of ADHD
    • …
    corecore