21 research outputs found

    Acute and delayed mild coagulopathy are related to outcome in patients with isolated traumatic brain injury

    Get PDF
    INTRODUCTION: The relationship between isolated traumatic brain injury (TBI) associated coagulopathy and patient prognosis frequently lacks information regarding the time course of coagulation disorders throughout the post-traumatic period. This study was conducted to assess the prevalence and time course of post-traumatic coagulopathy in patients with isolated TBI and the relationship of these hemostatic disorders with outcome. METHODS: The local Human Subjects Committee approved the study. We retrospectively studied the medical records of computed tomography (CT)-confirmed isolated TBI patients with an extracranial abbreviated injury scale (AIS) <3 who were primarily referred to a Level 1 trauma centre in Amsterdam (n = 107). Hemostatic parameters including activated partial thromboplastin time (aPTT), prothrombin time (PT), platelet count, hemoglobin, hematocrit, glucose, pH and lactate levels were recorded throughout a 72-hour period as part of a routine standardized follow-up of TBI. Coagulopathy was defined as a aPPT >40 seconds and/or a PTT in International Normalized Ratio (INR) >1.2 and/or a platelet count <120*10(9)/l. RESULTS: Patients were mostly male, aged 48 ± 20 years with a median injury severity score of 25 (range 20 to 25). Early coagulopathy as diagnosed in the emergency department (ED) occurred in 24% of all patients. The occurrence of TBI-related coagulopathy increased to 54% in the first 24 hours post-trauma. In addition to an increased age and disturbed pupillary reflex, both coagulopathy upon ED arrival and during the first 24 hours post-trauma provided an independent prognostic factor for unfavorable outcome (odds ratio (OR) 3.75 (95% CI 1.07 to 12.51; P = 0.04) and OR 11.61 (2.79 to 48.34); P = 0.003). CONCLUSIONS: Our study confirms a high prevalence of early and delayed coagulopathy in patients with isolated TBI, which is strongly associated with an unfavorable outcome. These data support close monitoring of hemostasis after TBI and indicate that correction of coagulation disturbances might need to be considered

    Programmed cell death during early development of the nervous system, modelled by pruning in a neural network

    No full text
    An artificial neural network model is presented in which the development is simulated of a baby's ability to control movement of his forearm around the elbow, until he is capable of goal-directed reaching. The neural network implementation provides the facility to change the number of nodes (or artificial neurons), and thus allows simulating 'natural' or 'programmed' cell death in the nervous sytem and its effects on learning in, and performance of, the motor control system. It was found that a gradual decrease in the number of artificial interneurons could be allowed once the network's task had been learned. Every time some 'relearning' was necessary, which implied that the network made small adjustments in its connectivity. When it was tried to train the network with only few interneurons right from the beginning, the task could never be learned. In the discussion an attempt is made to understand the biological relevance of the initial overproduction and the subsequent death of a large fraction of the number of neurons
    corecore