7 research outputs found

    Particle interactions and lattice dynamics: Scenarios for efficient bidirectional stochastic transport?

    Full text link
    Intracellular transport processes driven by molecular motors can be described by stochastic lattice models of self-driven particles. Here we focus on bidirectional transport models excluding the exchange of particles on the same track. We explore the possibility to have efficient transport in these systems. One possibility would be to have appropriate interactions between the various motors' species, so as to form lanes. However, we show that the lane formation mechanism based on modified attachment/detachment rates as it was proposed previously is not necessarily connected to an efficient transport state and is suppressed when the diffusivity of unbound particles is finite. We propose another interaction mechanism based on obstacle avoidance that allows to have lane formation for limited diffusion. Besides, we had shown in a separate paper that the dynamics of the lattice itself could be a key ingredient for the efficiency of bidirectional transport. Here we show that lattice dynamics and interactions can both contribute in a cooperative way to the efficiency of transport. In particular, lattice dynamics can decrease the interaction threshold beyond which lanes form. Lattice dynamics may also enhance the transport capacity of the system even when lane formation is suppressed.Comment: 25 pages, 17 figures, 2 table

    Modeling Translation in Protein Synthesis with TASEP: A Tutorial and Recent Developments

    Full text link
    The phenomenon of protein synthesis has been modeled in terms of totally asymmetric simple exclusion processes (TASEP) since 1968. In this article, we provide a tutorial of the biological and mathematical aspects of this approach. We also summarize several new results, concerned with limited resources in the cell and simple estimates for the current (protein production rate) of a TASEP with inhomogeneous hopping rates, reflecting the characteristics of real genes.Comment: 25 pages, 7 figure

    Aromatase deficiency in men: a clinical perspective.

    No full text
    Human aromatase deficiency is a very rare syndrome characterized by congenital estrogen deprivation that is caused by loss-of-function mutations in CYP19A1, which encodes aromatase. Here, we review the presentation, diagnosis and treatment of aromatase deficiency in men to provide useful advice for clinical management of the condition. At presentation, all men with aromatase deficiency have tall stature, delayed bone maturation, osteopenia or osteoporosis and eunuchoid skeletal proportions. Diagnosis of the condition is supported by the presence of unfused epiphyses and undetectable serum estradiol levels; the condition can be further substantiated by genetic sequencing of CYP19A1. Transdermal estradiol treatment at a daily dose of about 25 microg might be adequate for lifelong replacement therapy. BMD and levels of serum estradiol, luteinizing hormone and testosterone should be monitored carefully and considered powerful biochemical markers of adequate estrogen substitution in clinical practice. Early diagnosis is important to initiate estrogen therapy as soon after puberty as possible to avoid the skeletal complications that are associated with this condition
    corecore