706 research outputs found

    Photon Energy Spectrum in BXsγB \to X_s \gamma and Comparison with Data

    Full text link
    A comparison of the inclusive photon energy spectrum in the radiative decay \BGAMAXS, measured recently by the CLEO collaboration, with the standard model is presented, using a BB-meson wave function model and improving earlier perturbative QCD-based computations of the same. The dependence of the photon energy spectrum on the non-perturbative model parameters, pFp_F, the bb-quark Fermi momentum in the BB hadron, and mqm_q, the spectator quark mass, is explicitly shown, allowing a comparison of these parameters with the ones obtained from the analysis of the lepton energy spectrum in semileptonic BB decays. Taking into account present uncertainties, we estimate \BBGAMAXS = (2.55 \pm 1.28) \times 10^{-4} in the standard model, assuming \absvts/\absvcb= 1.0. Comparing this with the CLEO measurement \BBGAMAXS = (2.32 \pm 0.67) \times 10^{-4} implies \absvts/\absvcb= 1.1 \pm 0.43, in agreement with the CKM unitarity.Comment: 16 pages (including 5 Figures as encapsulated ps-files: use epsf and rotate

    Tree-level contribution to \bar{B} -> X_d gamma using fragmentation functions

    Full text link
    We evaluate the most important tree-level contributions connected with the b-> u \bar{u} d gamma transition to the inclusive radiative decay \bar{B}-> X_d gamma using fragmentation functions. In this framework the singularities arising from collinear photon emission from the light quarks (u, \bar{u} and d) can be absorbed into the (bare) quark-to-photon fragmentation function. We use as input the fragmentation function extracted by the ALEPH group from the two-jet cross section measured at LEP, where one of the jets is required to contain a photon. To get the quark-to-photon fragmentation function at the fragmentation scale \mu_F \sim m_b, we use the evolution equation, which we solve numerically. We then calculate the (integrated) photon energy spectrum for b-> u \bar{u} d gamma related to the operators P^u_{1,2}. For comparison, we also give the corresponding results when using nonzero (constituent) masses for the light quarks.Comment: 13 pages, 4 figure

    Indirect search for supersymmetry in rare B decays

    Get PDF
    QCD corrections to the gluino induced contribution to b --> s gamma are shown to be important in order to extract reliable bounds on the off-diagonal elements of the squark mass matrices.Comment: 4 pages including 2 postscript figure

    Inclusive Decay Rate for BXd+γB \to X_d + \gamma in Next-to-Leading Logarithmic Order and CP Asymmetry in the Standard Model

    Full text link
    We compute the decay rate for the CKM-suppressed electromagnetic penguin decay BXd+γB \to X_d + \gamma (and its charge conjugate) in NLO QCD, including leading power corrections in 1/mb21/m_b^2 and 1/mc21/m_c^2 in the standard model. The average branching ratio of the decay BXdγB \to X_d\gamma and its charge conjugate is estimated to be in the range 6.0×1062.6×1056.0 \times 10^{-6} \leq \leq 2.6 \times 10^{-5}, obtained by varying the CKM-Wolfenstein parameters ρ\rho and η\eta in the range 0.1ρ0.4-0.1 \leq \rho \leq 0.4 and 0.2η0.460.2 \leq \eta \leq 0.46 and taking into account other parametric dependence. In the stated range of the CKM parameters, we find the ratio R(dγ/sγ)=<BR(BXdγ)>/R(d\gamma/s\gamma) = <BR(B \to X_d\gamma)>/ to lie in the range between 0.017 and 0.074. Theoretical uncertainties in this ratio are found to be small. Hence, this ratio is well suited to provide independent constraints on the CKM parameters. The CP-asymmetry in the BXdγB \to X_d \gamma decay rates is found to be in the range (735)(7 - 35)%. Both the decay rates and CP asymmetry are measurable in forthcoming experiments at BB factories and possibly at HERA-B.Comment: 17 pages including 7 postscript figures; uses epsfig; The changes w.r.t the previous version are: A comment about the Bremsstrahlung corrections is added as well as a note on the feasibility of the measurement $B -> X_d gamma

    Contribution of bsggb \to sgg through the QCD anomaly in exclusive decays B±(η,η)(K±,K±)B^{\pm}\to (\eta^{\prime},\eta)(K^{\pm}, K^{*\pm}) and B0(η,η)(K0,K0)B^{0}\to (\eta^{\prime},\eta)(K^{0},K^{*0})

    Full text link
    We compute the decay rates for the exclusive decays B±(η,η)(K±,K±)B^{\pm} \to (\eta^{\prime},\eta) (K^{\pm}, K^{*\pm}) and B0(η,η)(K0,K0)B^{0}\to (\eta^{\prime},\eta) (K^{0}, K^{*0}) in a QCD-improved factorization framework by including the contribution from the process bsggs(η,η)b\to sgg \to s (\eta^{\prime}, \eta) through the QCD anomaly. This method provides an alternative estimate of the contribution bsccˉs(η,η)b \to s c\bar{c} \to s(\eta,\eta^\prime) to these decays as compared to the one using the intrinsic charm content of the η\eta^{\prime} and η\eta mesons determined through the decays J/ψ(η,η,ηc)γJ/\psi \to (\eta,\eta^\prime ,\eta_c) \gamma. The resulting branching ratios are compared with the CLEO data on B±ηK±B^{\pm} \to \eta^{\prime} K^{\pm} and B0ηK0B^{0} \to \eta^{\prime} K^{0} and predictions are made for the rest.Comment: 16 pages including 4 postscript figures; uses epsfig. The most recent branching ratios from CLEO, ref. [5], are taken into account. The theory part is unchange
    corecore