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Abstract
QCD corrections to the gluino induced contribution tob → sγ are shown to be important in
order to extract reliable bounds on the off-diagonal elements of the squark mass matrices.

Rare processes are an important tool for investi-
gating new interactions. The standard model contribu-
tions are usually small and new physics may manifest
itself clearly. In particular, rare decays provide guide-
lines for supersymmetry model building. The experi-
mental observation of these Flavour Changing Neutral
Currents (FCNCs), or the upper limits set on them yield
stringent relations between the many parameters in the
soft supersymmetry-breaking terms. The processes in-
volving transitions between first and second generation
quarks, namely FCNC processes in theK system, are
considered to be most efficient in shaping viable super-
symmetric flavour models. Moreover, the tight experi-
mental bounds on some flavour diagonal transitions such
as the electric dipole moment of the electron and of the
neutron, as well asg − 2, help constrain soft terms in-
ducing chirality violations.

The severe experimental constraints on flavour
violations have no direct explanation in the structure of
the minimal supersymmetric standard model (MSSM).
This is the essence of the well-known supersymmetric
flavour problem. There exist several supersymmetric
models (within the MSSM) with specific solutions to
this problem. Most popular are the ones in which the
dynamics of flavour sets in above the supersymmetry
breaking scale and the flavour problem is killed
by the mechanisms of communicating supersymmetry
breaking to the experimentally accessible sector: In the
constrained minimal supersymmetric standard model
(mSUGRA) supergravity is the mediator between the
supersymmetry breaking and the visible sector [1].
In gauge-mediated supersymmetry breaking models
(GMSBs) the communication between the two sectors
is realized by gauge interactions [2]. More recently
the anomaly mediated supersymmetry breaking models
(AMSBs) were proposed, in which the two sectors are
linked by interactions suppressed by the Planck mass

[3]. Furthermore, there are other classes of models in
which the flavour problem is solved by particular flavour
symmetries.

Neutral flavour transitions involving third genera-
tion quarks, typically in the B system, do not pose yet
serious threats to these models. The rare decayb → sγ
has already been detected, but the precision of the mea-
surements is at the moment not very high [4]. Never-
theless, it has already carved out some regions in the
space of free parameters of most of the models in the
above classes (see [5] and references therein). In partic-
ular, it dangerously constrains several somewhat tuned
realizations of these models [6]. Once the experimen-
tal precision is increased, this decay will undoubtedly
help selecting the viable regions of the parameter space
in the above class of models and/or discriminate among
these or other possible models. It is important to calcu-
late the rate of this decay with theoretical uncertainties
reduced as much as possible, and general enough for
generic supersymmetric models. In the standard model,
the rate forb → sγ is known up to next-to-leading or-
der (NLL) in QCD [7]. The NLL calculation reduces
the large scale dependence present at the LL (±25%)
to a mere percent uncertainty. This accuracy is how-
ever somewhat fortuitous as it is obtained through large
accidential cancellations among different contributions
to the NLL corrections [8, 9]. Indeed, the accuracy for
the NLL calculation of theb → sγ rate in a two-Higgs
model is substantially worse [8].

The calculation of this decay rate within supersym-
metric models is still far from this level of sophistica-
tion. There are several contributions to the decay ampli-
tude: Besides theW− − t-quark and theH− − t-quark
contributions, there are also the chargino, gluino and
neutralino contributions. All these contributions were
calculated in [10] within the mSUGRA model; their an-
alytic expressions apply naturally also to the GMSB,
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and AMSB models. The inclusion of QCD corrections
needed for the calculation of the rate, was in [10] as-
sumed to follow the SM pattern. A calculation taking
into account solely the gluino contribution has been per-
formed in [11] for a generic supersymmetric model, but
no QCD corrections were included.

An interesting NLL analysis ofb → sγ was recently
performed [12, 13] in a specific class of models where
the only source of flavour violation at the electroweak
scale is that of the SM, encoded in the Cabibbo-
Kobayashi-Maskawa (CKM) matrix. This calculation,
however, cannot be used in particular directions of the
parameter space of the above listed models in which
quantum effects induce a gluino contribution as large
as the chargino or the SM contributions. Nor it can be
used as a model-discriminator tool, able to constrain the
potentially large sources of flavour violation typical of
generic supersymmetric models.

Among these, the flavour non-diagonal vertex
gluino-quark-squark induced by the flavour violating
scalar mass term and trilinear terms is particularly
interesting. This is generically assumed to induce the
dominant contribution to quark flavour transitions, as
this vertex is weighted by the strong coupling constant
gs. Therefore, it is often taken as the only contribution
to these transitions and in particular to theb → sγ
decay, when attempting to obtain order-of-magnitude
upper bounds on flavour violating terms in the scalar
potential [11, 14]. Once the constraints coming from the
experimental measurements are imposed, however, the
gluino contribution is reduced to values such that the
SM and the other supersymmetric contributions cannot
be neglected anymore. Any LL and NLL calculation
of the b → sγ rate in generic supersymmetric models,
therefore, should then include all possible contributions.

The gluino contribution, however, presents some
peculiar features related to the implementation of the
QCD corrections. In ref. [15] this contribution to the
decayb → sγ is therefore investigated in great detail
for supersymmetric models with generic soft terms. It
is shown that the relavant operator basis of the SM
effective Hamiltonian gets enlarged to contain magnetic
and chromomagnetic operators with an extra factor of
αs and weighted by a quark massmb or mc, and
also magnetic and chromomagnetic operators of lower
dimensionality, as well as additional scalar and tensorial
four-quark operators. A few results of our analysis
in ref. [15] are given in the following, showing the
effect of the LL QCD corrections on constraints on
supersymmetric sources of flavour violation.

To understand the sources of flavour violation which
may be present in supersymmetric models in addition to
those enclosed in the CKM matrix, one has to consider
the contributions to the squark mass matrices

M2

f =

(

m2

f,LL m2

f,LR

m2

f,RL m2

f,RR

)

+ (1)

(

Ff,LL + Df,LL Ff,LR

Ff,RL Ff,RR + Df,RR

)

, (2)

wheref stands for up- or down-type squarks. In the
super CKM basis where the quark mass matrices are
diagonal and the squarks are rotated in parallel to their
superpartners, theF terms from the superpotential and
theD terms turn out to be diagonal3×3 submatrices of
the6 × 6 mass matricesM2

f . This is in general not true
for the additional terms (1), originating from the soft
supersymmetric breaking potential. As a consequence,
gluino contributions to the decayb → sγ are induced
by the off-diagonal elements of the soft termsm2

f,LL,
m2

f,RR, m2

f,RL.
It is convenient to select one possible source of

flavour violation in the squark sector at a time and
assume that all the remaining ones are vanishing.
Following ref. [11], all diagonal entries inm2

d, LL,
m2

d, RR, and m2

u, RR are set to be equal and their
common value is denoted bym2

q̃. The branching ratio
can then be studied as a function of

δLL,ij =
(m2

d, LL)ij

m2

q̃

, δRR,ij =
(m2

d, RR)ij

m2

q̃

, (3)

δLR,ij =
(m2

d, LR)ij

m2

q̃

, (i 6= j). (4)

The remaining crucial parameter needed to determine
the branching ratio isx = m2

g̃/m2

q̃, where mg̃ is
the gluino mass. In the following, we concentrate on
the LL QCD corrections to the gluino contribution.

In Figs. 1 and 2, the solid lines show the

Figure 1. Gluino-induced branching ratioBR(B → Xsγ) as
a function ofx = m2

g̃/m2

q̃ , obtained when the only source of
flavour violation isδLR,23 (see text).

QCD corrected branching ratio, when onlyδLR,23 or
δLL,23 are non vanishing. The branching ratio is
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Figure 2. Same as in Fig. 1 when onlyδLL,23 is non-
vanishing.

plotted as a function ofx, using mq̃ = 500 GeV.
The dotted lines show the range of variation of the
branching ratio, when the renormalization scaleµ varies
in the interval 2.4–9.6 GeV. Numerically, the scale
uncertaintly inBR(B → Xsγ) is about±25%. An
extraction of bounds on theδ quantities more precise
than just an order of magnitude, therefore, would
require the inclusion of next-to-leading logarithmic
QCD corrections. It should be noticed, however, that
the inclusion of the LL QCD corrections has already
removed the large ambiguity on the value to be assigned
to the factorαs(µ) in the gluino-induced operators.
Before adding QCD corrections, the scale in this factor
can assume all values fromO(mb) to O(mW ): the
difference betweenBR(B → Xsγ) obtained when
αs(mb) or whenαs(mW ) is used, is of the same order
as the LL QCD corrections. The corresponding values
for BR(B → Xsγ) for the two extreme choices ofµ
are indicated in Figs. 1 and 2 by the dot-dashed lines
(µ = mW ) and the dashed lines (µ = mb). The choice
µ = mW gives values for the non-QCD corrected
BR(B → Xsγ) relatively close to the band obtained
when the LL QCD corrections are included, if only
δLL,23 is non-vanishing. Finding a corresponding value
of µ that minimizes the QCD corrections in the case
studied in Fig. 1, when onlyδLR,23 is different from
zero, depends strongly on the value ofx. In the context
of the full LL result, it is important to stress that the
explicit αs factor has to be evaluated - like the Wilson
coefficients - at a scaleµ = O(mb).

In spite of the large uncertainties which the
branching ratioBR(B → Xsγ) still has at LL in
QCD, it is possible to extract indications on the size
that the δ-quantities may maximally acquire without
inducing conflicts with the experimental measurements
(see [15]).
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