6 research outputs found

    Effectiveness of a Novel Compound HAIR & SCALP COMPLEX on Hair Follicle Regeneration

    No full text
    Background: People lose between 50 and 100 hairs a day and generate new ones from stem cells in hair follicles, but in those suffering from baldness, the stem cells remain inactive and are unable to regenerate new hair. Although 9% of hair follicles remain in telogen at any time, a variety of factors, including growth factors and cytokines, promote the transition from telogen to anagen and the subsequent stimulation of hair growth. Methods: We compared in vitro, on cultures of human hair follicles, the effect on hair growth and regeneration of the dermal papilla of plant-derived nanovesicles, exosomes from cord blood stem cells and bovine colostrum, a mixture of growth factors and cytokines purified from bovine colostrum, called GF20, and a new compound called HAIR & SCALP COMPLEX obtained by adding exosomes isolated from colostrum to GF20. Results: The analyses demonstrated a significant increase in the growth of the bulb and the regeneration of the dermal papilla in the samples treated with HAIR & SCALP COMPLEX compared to the other elements tested. Conclusions: In this research, we propose a possible new treatment that could help significantly slow down hair loss and encourage new hair growth: HAIR & SCALP COMPLEX

    Polystyrene Nanoplastics in Aquatic Microenvironments Affect Sperm Metabolism and Fertilization of <i>Mytilus galloprovincialis</i> (Lamark, 1819)

    No full text
    The continuous and unregulated discharge of wastes and pollutants into the aquatic environment has required constant monitoring of the risks incurred by aquatic ecosystems. Alarmism arises from plastic pollution as larger artifacts release nanoscale fragments that can contact free-living stages such as gametes, embryos, and larvae. Specifically, the interaction between spermatozoa, released in water in externally fertilizing species, and the surrounding microenvironment is essential for successful fertilization. Activation and kinematics of movement, proper maintenance of ionic balance, and chemotactism are processes highly sensitive to even minimal perturbations caused by pollutants such as polystyrene nanoplastics. Spermatozoa of Mytilus galloprovincialis (M. galloprovincialis), an excellent ecotoxicological model, undergo structural (plasma membrane ruptures, DNA damage) and metabolic (reduced motility, fertilizing capacity) damage upon exposure to 50 nm amino-modified polystyrene nanoplastics (nPS-NH2). Nanoplastics of larger diameter (100 nm) did not affect sperm parameters. The findings highlighted the negative impact that plastic pollution, related to nanoparticle diameter and concentration, could have on sperm quality and reproductive potential of organisms, altering the equilibrium of aquatic ecosystems

    In Vitro Nano-Polystyrene Toxicity: Metabolic Dysfunctions and Cytoprotective Responses of Human Spermatozoa

    No full text
    The ubiquitous spread of Polystyrene nanoplastics (PS-NPs) has rendered chronic human exposure an unavoidable phenomenon. The biodistribution of such particles leads to bioaccumulation in target organs including the testis, the site of sperm maturation. The purpose of this research has been to estimate the impact of PS-NPs (50 and 100 nm) on the metabolism of mature spermatozoa. The analysis of the semen parameters has revealed a higher toxicity of the smaller sized PS-NPs, which have negatively affected major organelles, leading to increased acrosomal damage, oxidative stress with the production of ROS, DNA fragmentation, and decreased mitochondrial activity. PS-NPs of 100 nm, on the other hand, have mainly affected the acrosome and induced a general state of stress. An attempt has also been made to highlight possible protective mechanisms such as the expression of HSP70s and their correlation among various parameters. The results have evinced a marked production of HSP70s in the samples exposed to the smaller PS-NPs, negatively correlated with the worsening in oxidative stress, DNA fragmentation, and mitochondrial anomalies. In conclusion, our results have confirmed the toxicity of PS-NPs on human spermatozoa but have also demonstrated the presence of mechanisms capable of counteracting at least in part these injuries

    Plastic additives in commercial fish of Aegean and Ionian Seas and potential hazard to human health

    No full text
    Plastic additives include a wide range of pollutants, added throughout the production process of plastics aiming to improve their properties. Given that they are not chemically bound to the plastic items, they can easily migrate in the marine environment allowing their uptake by marine organisms and accumulation in their tissues. Representatives of Phthalic acid esters (PAEs) and bisphenols have been characterized for their ability to impact not only marine organisms but also humans via fish and seafood consumption. In this study, a liquid-liquid method was applied to determine the concentrations of selected PAEs and Bisphenol A (BPA) in the tissues of E.encrasicolus, S.pilchardus, B.boops, and M.barbatus from two important divisions of fisheries (North Aegean and the Western Ionian Seas, thereof NAS and IOS respectively) of the Mediterranean Sea. The level of contamination varied among the different species and geographical locations. DEHP (bis(2-ethylhexyl) phthalate) had the highest mean concentrations of the examined PAEs for all four species examined. Statistically significant differences in DEHP mean concentrations were observed between the tissues of B.boops (collected from NAS) and S.pilchardus (from IOS) (p &lt; 0.05, Wilcoxon rank test). DIDP (di-isodecyl phthalate) was the following most common PAEs, although no statistically significant differences were presented between sites, species, and tissues. DINP (di-isononyl phthalate) was recorded only in the GIT of E.encrasicolus (from NAS), while the rest of the examined PAEs were presented in a smaller subset of the samples. Noticeably, the parent diester DBP and the metabolic monoester MNBP were concurrently detected in a part of the analyzed samples. The level of risk via fish consumption, based on the Estimated Daily Intake and the Target Hazard Quotient (THQ), showed that the PAEs and BPA had a low likelihood of a negative effect occurring for every scenario that was examined, although THQ for BPA indicated there was a higher likelihood than PAEs of an adverse effect to be presented. The results of this study highlighted the need for future efforts focusing on the factors affecting plastic additives occurrences in the marine environment, especially for marine organisms intended for consumption

    Spermiotoxicity of Nano-TiO2 Compounds in the Sea Urchin Paracentrotus lividus (Lamarck, 1816): Considerations on Water Remediation

    No full text
    Despite the great utility of nanoparticles (NPs) in water remediation, their effects on marine ecosystems are unknown and unpredictable. The toxicity of the most used nanoparticles, such as ZnO, Ag, and TiO2 on the purple sea urchin, Paracentrotus lividus (Lamarck, 1816), has been demonstrated by several authors. The aim of this study was to evaluate the effects of TiO2 sol-gel and TiO2-rGO nanocompounds on both vitality and motility of spermatozoa of P. lividus. The spermatozoa were exposed at different times (30 and 60 min) and concentrations (10, 20, 40 &micro;g/mL) of both nano-TiO2 compounds. The results clearly showed a decrease in both vitality and motility of P. lividus spermatozoa exposed. In particular, vitality and motility were inversely related to both exposure time and concentration of TiO2 sol-gel and TiO2-rGO nanocompounds

    Antioxidant activity of two <i>Opuntia</i> Mill. species fruit extracts on human sperm quality after a freeze-thaw cycle

    No full text
    This study investigated the phenolic compounds and antioxidant capacity of fruit extracts of Opuntia dillenii (Ker Gawl.) Haw.(OD) and Opuntia ficus-indica (L.) Mill.(OFI), yellow (F1) and red (F2) varieties. In order to evaluate the antioxidant activity of these extracts on human sperm quality after thawing, the semen parameters (vitality, motility, acrosome reaction, oxidative stress, and DNA fragmentation) were analysed after 1 h of exposure. The results showed that OD has higher phenolic content and antioxidant power than OFI, and that they are higher in F2 than F1. Furthermore, regarding the activity of extracts on thawed sperm, the results showed a significant increase in motility in samples treated with OFI F1 and OD extracts, while an improvement in vitality and acrosome reaction and a reduction of DNA fragmentation were observed in all exposed samples compared to the control. Finally, a reduction of oxidative stress was observed in samples exposed to OFI F2 and OD than control.</p
    corecore