20 research outputs found

    LSST Science Book, Version 2.0

    Get PDF
    A survey that can cover the sky in optical bands over wide fields to faint magnitudes with a fast cadence will enable many of the exciting science opportunities of the next decade. The Large Synoptic Survey Telescope (LSST) will have an effective aperture of 6.7 meters and an imaging camera with field of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over 20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a total point-source depth of r~27.5. The LSST Science Book describes the basic parameters of the LSST hardware, software, and observing plans. The book discusses educational and outreach opportunities, then goes on to describe a broad range of science that LSST will revolutionize: mapping the inner and outer Solar System, stellar populations in the Milky Way and nearby galaxies, the structure of the Milky Way disk and halo and other objects in the Local Volume, transient and variable objects both at low and high redshift, and the properties of normal and active galaxies at low and high redshift. It then turns to far-field cosmological topics, exploring properties of supernovae to z~1, strong and weak lensing, the large-scale distribution of galaxies and baryon oscillations, and how these different probes may be combined to constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at http://www.lsst.org/lsst/sciboo

    LSST telescope and site status

    No full text

    Image Degradation Due To Assembly And Alignment Errors In Conical Foil X-Ray Telescopes

    No full text
    The technology to fabricate and assemble many concentric, nested conical foil x-ray telescopes for high-throughput, moderate-resolution, spectroscopic applications promises to be a cost-effective alternative to the grinding and polishing of conventional grazing incidence Wolter Type I telescopes. The three fundamental mechanisms that degrade achievable resolution for any imaging system are diffraction, geometrical aberrations (due to residual design errors, surface figure errors, and alignment errors), and scattering due to residual optical surface irregularities. A detailed parametric analysis of the image degradation due to each of these mechanisms is presented, with particular emphasis on the assembly and alignment errors for these tightly nested conical foil x-ray telescopes. A detailed error budget tree is then developed from which assembly and alignment tolerances can be derived. This error budget tree allows systems engineering trade-offs between foil surface tolerances, assembly and alignment tolerances, and the intrinsic resolution due to diffraction and residual design errors (the conical approximation to the ideal paraboloidal and hyperboloidal surface figure). Although the Danish Space Research Institute\u27s XSPECT conical foil x-ray telescope design parameters were used in this study, the methodology developed is applicable to any nested array of grazing incidence x-ray telescopes. © 1996 Society of Photo-Optical Instrumentation Engineers
    corecore