107 research outputs found

    Psychosexual health in gynecologic cancer

    Get PDF
    More people are living with the long-term effects of cancer owing to improvements in cancer treatments and an aging population. Many people diagnosed with cancer report a negative impact on sexual identity, sexual functioning, and their sexual relationship. Gynecologic cancer survivors are often the most severely affected. These cancers involve cancers of the ovaries, uterus, cervix, vagina, and vulva. The impact of these cancers on sexual health results not only from the disease process itself, but may also be due to the necessary treatments required. These can have a profound impact on psychological, physiological, and social well-being both in the short and long term, which may result in negative impact on the quality of life of the patient as well as her partner. Although most patients express that they would like to be more informed about sexual health and would like to have the opportunity to discuss these issues with their therapeutic team, sexual health is often not discussed with the patient

    Pim-1 Kinase Expression Predicts Radiation Response in Squamocellular Carcinoma of Head and Neck and Is under the Control of Epidermal Growth Factor Receptor

    Get PDF
    Pim-1 is an oncogenic serine/threonine kinase with poorly defined function in epithelial cancers. In this study, we determined 1) associations of Pim-1 expression with clinicopathological parameters including responsiveness to irradiation in squamocellular cancers of head and neck and 2) how Pim-1 expression is controlled subsequent to irradiation. Moderate to high expression of Pim-1 correlated to poor response to radiation therapy (P = .003). It is also associated to the expression of epidermal growth factor receptor (EGFR, P < .0001), which has been shown to be activated by irradiation. In radioresistant tumors, irradiation promoted nuclear translocation of Pim-1 (P < .005). When directly testing EGFR dependence of Pim-1 expression, up-regulation and nuclear translocation of Pim-1 could be induced through stimulation of EGFR with its ligands EGF or transforming growth factor a. Both ligand- and irradiation-induced changes in Pim-1 expression and localization could be inhibited by the monoclonal anti-EGFR antibody cetuximab and by the tyrosine kinase inhibitor gefitinib also targeting EGFR. These results suggest that irradiation-induced activation of EGFR upregulates Pim-1, and Pim-1 may be used as a novel predictive marker of radiation response in patients with squamocellular cancers of head and neck.</p

    Polyomaviruses detectable in head and neck carcinomas

    Get PDF
    Polyomaviruses (PyV) independent or jointly with human papillomavirus (HPV), might have a role in head and neck carcinomas (HNSCC). We analyzed the prevalence and viral DNA loads of SV40, JCV and BKV with quantitative PCR (qPCR) and all 13 HPyVs with a novel Multiplex method in 82 HNSCC samples with known HPV status and disease-specific survival (DSS) and 24 HNSCC cell lines.JCV was the most prevalent PyV present in 37% of HNSCC and the most prevalent sites were lip (80%), larynx (67%) and oral cavity (59%). JCV viral load was highest in larynx but variation was wide (152514 mean copies/μg DNA, SD± 304820). BKV was found only in one oral carcinoma with low viral load. SV40 was detected in 60% lip and 20.7% oral carcinomas with low copy numbers (6.6- 23.7 copies/μg DNA). Altogether, 86% of JCV-positive samples were co-infected with HPV (p=0.001), with no impact on DSS. Agreement between qPCR and Multiplex methods was substantial (Cohen's kappa= 0.659). Multiplex method detected additional HPyV in five samples. JCV was found in 9/24 HNSCC cell lines, all deriving from oral cavity. Our data provide evidence that JCV might have a role in HNSCC as independent virus or co-factor of HPV.</p

    SATB1 as oncogenic driver and potential therapeutic target in head & neck squamous cell carcinoma (HNSCC)

    Get PDF
    The Special AT-rich sequence binding protein 1 (SATB1) is a genome organizer protein that controls gene expression of numerous genes by regulating chromatin architecture and targeting chromatin-remodeling/-modifying enzymes onto specific chromatin regions. SATB1 is overexpressed in various tumors. In head and neck squamous cell carcinoma (HNSCC), SATB1 upregulation is correlated with TNM classification, metastasis, poor prognosis and reduced overall survival. In this paper, we comprehensively analyze cellular and molecular effects of SATB1 in a large set of primary cell lines from primary HNSCC or metastases, using RNAi-mediated knockdown in vitro and, therapeutically, in tumor xenograft mouse models in vivo. In a series of 15 cell lines, major differences in SATB1 levels are observed. In various 2-D and 3-D assays, growth inhibition upon efficient siRNA-mediated SATB1 knockdown depends on the cell line rather than initial SATB1 levels. Inhibitory effects are found to be based on cell cycle deceleration, apoptosis induction, decreased HER3 and Heregulin A&B expression, and effects on EMT genes. In vivo, systemic treatment of tumor xenograft-bearing mice with siRNAs formulated in polymeric nanoparticles inhibits tumor growth of two HNSCC xenograft models, resulting from therapeutic SATB1 reduction and concomitant decrease of proliferation and induction of apoptosis. In conclusion, SATB1 represents a promising target in HNSCC, affecting crucial cellular processes and molecular pathways.</p

    Screen-printed and spray coated graphene-based RFID transponders

    Get PDF
    We report Ultra-High-Frequency (UHF, 800MHz-1GHz) Radio Frequency Identification (RFID) transponders consisting of printed dipole antennas combined with RFID microchips. These are fabricated on Kapton via screen printing and on paper via spray coating, using inks obtained via microfluidization of graphite. We introduce a hybrid antenna structure, where an Al loop (small compared to the overall size of the antenna) is connected to a microchip with the double function of matching the impedances of antenna and microchip and avoiding bonding between exfoliated graphite and chip. The transponders have reading distance11m at UHF RFID frequencies, larger than previously reported for graphene-based RFID and comparable with commercial transponders based on metallic antenna

    Sequential adjuvant chemotherapy and radiotherapy in endometrial cancer--results from two randomised studies.

    Get PDF
    INTRODUCTION: Endometrial cancer patients with high grade tumours, deep myometrial invasion, or advanced stage disease have a poor prognosis. Randomized studies have demonstrated prevention of loco-regional relapses with radiotherapy with no effect on overall survival. The possible additive effect of chemotherapy remains unclear. Two randomized clinical trials (NSGO-EC-9501/EORTC-55991 and MaNGO ILIADE-III) were undertaken to clarify if sequential combination of chemotherapy and radiotherapy improves progression-free survival in high-risk endometrial cancer. The two studies were pooled. METHODS: Patients (n=540; 534 evaluable) with operated endometrial cancer FIGO stage I-III with no residual tumour and prognostic factors implying high-risk were randomly allocated to adjuvant radiotherapy with or without sequential chemotherapy. RESULTS: In the NSGO/EORTC study, combined modality treatment was associated with a 36 % reduction in the risk for relapse or death (HR 0.64, 95 % CI 0.41-0.99; P=0.04); two-sided tests were used. The result from the MaNGO-study pointed in the same direction (HR 0.61), but was not significant. In combined analysis, the estimate of risk for relapse or death was similar but with narrower confidence limits (HR 0.63, CI 0.44-0.89; P=0.009). Neither study showed significant differences in overall survival. In combined analysis, overall survival approached statistical significance (HR 0.69, CI 0.46-1.03; P = 0.07) and cancer-specific survival was significant (HR 0.55, CI 0.35-0.88; p=0.01). CONCLUSION: Addition of adjuvant chemotherapy to radiation improves progression-free survival in operated endometrial cancer patients with no residual tumour and high risk profile. A remaining question for future studies is if addition of radiotherapy to chemotherapy improves the results

    Copy Number Gains of the Putative CRKL Oncogene in Laryngeal Squamous Cell Carcinoma Result in Strong Nuclear Expression of the Protein and Influence Cell Proliferation and Migration

    Get PDF
    Laryngeal squamous cell carcinoma is a major medical problem worldwide. Although our understanding of genetic changes and their consequences in laryngeal cancer has opened new therapeutic pathways over the years, the diagnostic as well as treatment options still need to be improved. In our previous study, we identifed CRKL (22q11) as a novel putative oncogene overexpressed and amplifed in a subset of LSCC tumors and cell lines. Here we analyze to what extent CRKL DNA copy number gains correlate with the higher expression of CRKL protein by performing IHC staining of the respective protein in LSCC cell lines (n=3) and primary tumors (n=40). Moreover, the importance of CRKL gene in regard to proliferation and motility of LSCC cells was analyzed with the application of RNA interference (siRNA). Beside the physiological cytoplasmic expression, the analysis of LSCC tumor samples revealed also nuclear expression of CRKL protein in 10/40 (25%) cases, of which three (7.5%), presented moderate or strong nuclear expression. Similarly, we observed a shift towards aberrantly strong nuclear abundance of the CRKL protein in LSCC cell lines with gene copy number amplifcations. Moreover, siRNA mediated silencing of CRKL gene in the cell lines showing its overexpression, signifcantly reduced proliferation (p<0.01) as well as cell migration (p<0.05) rates. Altogether, these results show that the aberrantly strong nuclear localization of CRKL is a seldom but recurrent phenomenon in LSCC resulting from the increased DNA copy number and overexpression of the gene. Moreover, functional analyses suggest that proliferation and migration of the tumor cells depend on CRKL expression.</p

    Human Tumor-Derived Matrix Improves the Predictability of Head and Neck Cancer Drug Testing

    Get PDF
    In vitro cancer drug testing carries a low predictive value. We developed the human leiomyoma–derived matrix “Myogel” to better mimic the human tumor microenvironment (TME). We hypothesized that Myogel could provide an appropriate microenvironment for cancer cells, thereby allowing more in vivo–relevant drug testing. We screened 19 anticancer compounds, targeting the epidermal growth factor receptor (EGFR), MEK, and PI3K/mTOR on 12 head and neck squamous cell carcinoma (HNSCC) cell lines cultured on plastic, mouse sarcoma–derived Matrigel (MSDM), and Myogel. We applied a high-throughput drug screening assay under five different culturing conditions: cells in two-dimensional (2D) plastic wells and on top or embedded in Matrigel or Myogel. We then compared the efficacy of the anticancer compounds to the response rates of 19 HNSCC monotherapy clinical trials. Cancer cells on top of Myogel responded less to EGFR and MEK inhibitors compared to cells cultured on plastic or Matrigel. However, we found a similar response to the PI3K/mTOR inhibitors under all culturing conditions. Cells grown on Myogel more closely resembled the response rates reported in EGFR-inhibitor monotherapy clinical trials. Our findings suggest that a human tumor matrix improves the predictability of in vitro anticancer drug testing compared to current 2D and MSDM methods</p

    PCR-based zebrafish model for personalised medicine in head and neck cancer

    Get PDF
    BackgroundCurrently, in vivo model for personalised cancer drug testing is challenging. A zebrafish larvae xenograft model has been applied in recent years to cancer research, particularly for drug testing purposes, showing promising results in drug testing against patient-derived tumour xenografts. Currently, these xenograft models apply imaging techniques to measure drug efficacy. However, this method carries several limitations, including timely imaging, thereby reducing the available number of tested fish and drugs. Here, we propose a PCR-based fast assay to evaluate drug efficacy in a zebrafish larvae xenograft model.MethodsWe tested two primary and corresponding metastatic head and neck squamous cell carcinoma (HNSCC) cell lines and patient-derived tongue cancer sample applying zebrafish larvae xenograft model. Cisplatin efficacy was tested using imaging technique and compared the results with PCR-based methods. Drug screening of eight compounds was applied on both cell lines and patient sample using PCR.ResultsIn a head-to-head comparison, all the three techniques (imaging, quantitative PCR, and droplet digital PCR) showed similar reduction of the cancer cells growth after cisplatin treatment. Using the quantitative PCR assay, we demonstrated a dose-dependent response of HNSCC cells to cisplatin. Drug screening results of four HNSCC cell lines and patient sample revealed different drug efficacy between tested cancer cells.ConclusionWe introduce a novel, easy, fast and cost-effective PCR-based in vivo zebrafish larvae assay to test the response of cell lines and clinical tumour samples to anti-cancer drugs. This method goes hand-by-hand with the commonly used imaging assay.</p

    Recurrent epigenetic silencing of the PTPRD tumor suppressor in laryngeal squamous cell carcinoma

    Get PDF
    Cellular processes like differentiation, mitotic cycle, and cell growth are regulated by tyrosine kinases with known oncogenic potential and tyrosine phosphatases that downmodulate the first. Therefore, tyrosine phosphatases are recurrent targets of gene alterations in human carcinomas. We and others suggested recently a tumor suppressor function of the PTPRD tyrosine phosphatase and reported homozygous deletions of the PTPRD locus in laryngeal squamous cell carcinoma. In this study, we investigated other gene-inactivating mechanisms potentially targeting PTPRD, including loss-of-function mutations and also epigenetic alterations like promoter DNA hypermethylation. We sequenced the PTPRD gene in eight laryngeal squamous cell carcinoma cell lines but did not identify any inactivating mutations. In contrast, by bisulfite pyrosequencing of the gene promoter region, we identified significantly higher levels of methylation (p = 0.001 and p = 0.0002, respectively) in 9/14 (64%) laryngeal squamous cell carcinoma cell lines and 37/79 (47%) of primary laryngeal squamous cell carcinoma tumors as compared to normal epithelium of the upper aerodigestive tract. There was also a strong correlation (p = 0.0001) between methylation and transcriptional silencing for the PTPRD gene observed in a cohort of 497 head and neck tumors from The Cancer Genome Atlas dataset suggesting that DNA methylation is the main mechanism of PTPRD silencing in these tumors. In summary, our data provide further evidence of the high incidence of PTPRD inactivation in laryngeal squamous cell carcinoma. We suggest that deletions and loss-of-function mutations are responsible for PTPRD loss only in a fraction of cases, whereas DNA methylation is the dominating mechanism of PTPRD inactivation.</p
    • …
    corecore