99 research outputs found

    Psychosexual health in gynecologic cancer

    Get PDF
    More people are living with the long-term effects of cancer owing to improvements in cancer treatments and an aging population. Many people diagnosed with cancer report a negative impact on sexual identity, sexual functioning, and their sexual relationship. Gynecologic cancer survivors are often the most severely affected. These cancers involve cancers of the ovaries, uterus, cervix, vagina, and vulva. The impact of these cancers on sexual health results not only from the disease process itself, but may also be due to the necessary treatments required. These can have a profound impact on psychological, physiological, and social well-being both in the short and long term, which may result in negative impact on the quality of life of the patient as well as her partner. Although most patients express that they would like to be more informed about sexual health and would like to have the opportunity to discuss these issues with their therapeutic team, sexual health is often not discussed with the patient

    Clinical Value of 18F-fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in Response Evaluation after Primary Treatment of Advanced Epithelial Ovarian Cancer

    Get PDF
    Aims: To prospectively evaluate the use of F-18-fluorodeoxyglucose positron emission tomography/computed tomography (F-18-FDG-PET/CT) in the definition of the treatment response after primary treatment of advanced epithelial ovarian cancer (EOC). Materials and methods: Forty-nine patients with advanced EOC had an F-18-FDG PET/CT scan before and after primary treatment. The treatment response was defined with the currently used radiological and serological Response Criteria in Solid Tumors (RECIST1.1/GCIC) criteria and the modified PET Response Criteria in Solid Tumors (PERCIST). The concordance of the two methods was analysed. If the patient had a complete response to primary treatment by conventional criteria, the end of treatment F-18-FDG PET/CT scan (etPET/CT) was not opened until retrospectively at the time of disease progression. The ability of etPET/CT to predict the time to disease recurrence was analysed. The recurrence patterns were observed with an F-18-FDG PET/CT at the first relapse. Results: The agreement of the RECIST1.1/GCIC and modified PERCIST criteria in defining the primary treatment response in the whole patient cohort was good (weighted kappa coefficient = 0.78 ). Of the complete responders (n = 28), 34% had metabolically active lesions present in the etPET/CT, most typically in the lymph nodes. The same anatomical sites tended to activate at disease relapse, but were seldom the only site of relapse. In patients with widespread intra-abdominal carsinosis at diagnosis, the definition of metabolic response was challenging due to problems in distinguishing the physiological FDG accumulation in the bowel loops from the residual tumour in the same area. The presence of metabolically active lesions in the etPET/CT did not predict earlier disease relapse in the complete responders. Conclusions: In the present study, etPET/CT revealed metabolically active lesions in complete responders after EOC primary therapy, but they were insignificant for the patient's prognosis. The current study does not favour routine use of F-18-FDG PET/CT after EOC primary treatment for complete responders. (C) 2018 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.Peer reviewe

    Pim-1 Kinase Expression Predicts Radiation Response in Squamocellular Carcinoma of Head and Neck and Is under the Control of Epidermal Growth Factor Receptor

    Get PDF
    Pim-1 is an oncogenic serine/threonine kinase with poorly defined function in epithelial cancers. In this study, we determined 1) associations of Pim-1 expression with clinicopathological parameters including responsiveness to irradiation in squamocellular cancers of head and neck and 2) how Pim-1 expression is controlled subsequent to irradiation. Moderate to high expression of Pim-1 correlated to poor response to radiation therapy (P = .003). It is also associated to the expression of epidermal growth factor receptor (EGFR, P < .0001), which has been shown to be activated by irradiation. In radioresistant tumors, irradiation promoted nuclear translocation of Pim-1 (P < .005). When directly testing EGFR dependence of Pim-1 expression, up-regulation and nuclear translocation of Pim-1 could be induced through stimulation of EGFR with its ligands EGF or transforming growth factor a. Both ligand- and irradiation-induced changes in Pim-1 expression and localization could be inhibited by the monoclonal anti-EGFR antibody cetuximab and by the tyrosine kinase inhibitor gefitinib also targeting EGFR. These results suggest that irradiation-induced activation of EGFR upregulates Pim-1, and Pim-1 may be used as a novel predictive marker of radiation response in patients with squamocellular cancers of head and neck.</p

    Elevated TLR5 expression in vivo and loss of NF-kappa B activation via TLR5 in vitro detected in HPV-negative oropharyngeal squamous cell carcinoma

    Get PDF
    In oropharyngeal squamous cell carcinoma (OPSCC), the expression pattern of toll-like receptors (TLRs), in comparison between human papillomavirus (HPV)-positive and -negative tumors differs. TLRs control innate immune responses by activating, among others, the nuclear factor-κΒ (NF-κΒ) signaling pathway. Elevated NF-κΒ activity is detectable in several cancers and regulates cancer development and progression. We studied TLR5 expression in 143 unselected consecutive OPSCC tumors, and its relation to HPV-DNA and p16 status, clinicopathological parameters, and patient outcome, and studied TLR5 stimulation and consecutive NF-κB cascade activation in vitro in two human OPSCC cell lines and immortalized human keratinocytes (HaCat). Clinicopathological data came from hospital registries, and TLR5 immunoexpression was evaluated by immunohistochemistry. Flagellin served to stimulate TLR5 in cultured cells, followed by analysis of the activity of the NF-κB signaling cascade with In-Cell Western for IκΒ and p-IκΒ. High TLR5 expression was associated with poor disease-specific survival in HPV-positive OPSCC, which typically shows low TLR5 immunoexpression. High TLR5 immunoexpression was more common in HPV-negative OPSCC, known for its less-favorable prognosis. In vitro, we detected NF-κΒ cascade activation in the HPV-positive OPSCC cell line and in HaCat cells, but not in the HPV-negative OPSCC cell line. Our results suggest that elevated TLR5 immunoexpression may be related to reduced NF-κΒ activity in HPV-negative OPSCC. The possible prognosis-worsening mechanisms among these high-risk OPSCC patients however, require further evaluation.Peer reviewe

    Polyomaviruses detectable in head and neck carcinomas

    Get PDF
    Polyomaviruses (PyV) independent or jointly with human papillomavirus (HPV), might have a role in head and neck carcinomas (HNSCC). We analyzed the prevalence and viral DNA loads of SV40, JCV and BKV with quantitative PCR (qPCR) and all 13 HPyVs with a novel Multiplex method in 82 HNSCC samples with known HPV status and disease-specific survival (DSS) and 24 HNSCC cell lines.JCV was the most prevalent PyV present in 37% of HNSCC and the most prevalent sites were lip (80%), larynx (67%) and oral cavity (59%). JCV viral load was highest in larynx but variation was wide (152514 mean copies/μg DNA, SD± 304820). BKV was found only in one oral carcinoma with low viral load. SV40 was detected in 60% lip and 20.7% oral carcinomas with low copy numbers (6.6- 23.7 copies/μg DNA). Altogether, 86% of JCV-positive samples were co-infected with HPV (p=0.001), with no impact on DSS. Agreement between qPCR and Multiplex methods was substantial (Cohen's kappa= 0.659). Multiplex method detected additional HPyV in five samples. JCV was found in 9/24 HNSCC cell lines, all deriving from oral cavity. Our data provide evidence that JCV might have a role in HNSCC as independent virus or co-factor of HPV.</p

    Sequential adjuvant chemotherapy and radiotherapy in endometrial cancer--results from two randomised studies.

    Get PDF
    INTRODUCTION: Endometrial cancer patients with high grade tumours, deep myometrial invasion, or advanced stage disease have a poor prognosis. Randomized studies have demonstrated prevention of loco-regional relapses with radiotherapy with no effect on overall survival. The possible additive effect of chemotherapy remains unclear. Two randomized clinical trials (NSGO-EC-9501/EORTC-55991 and MaNGO ILIADE-III) were undertaken to clarify if sequential combination of chemotherapy and radiotherapy improves progression-free survival in high-risk endometrial cancer. The two studies were pooled. METHODS: Patients (n=540; 534 evaluable) with operated endometrial cancer FIGO stage I-III with no residual tumour and prognostic factors implying high-risk were randomly allocated to adjuvant radiotherapy with or without sequential chemotherapy. RESULTS: In the NSGO/EORTC study, combined modality treatment was associated with a 36 % reduction in the risk for relapse or death (HR 0.64, 95 % CI 0.41-0.99; P=0.04); two-sided tests were used. The result from the MaNGO-study pointed in the same direction (HR 0.61), but was not significant. In combined analysis, the estimate of risk for relapse or death was similar but with narrower confidence limits (HR 0.63, CI 0.44-0.89; P=0.009). Neither study showed significant differences in overall survival. In combined analysis, overall survival approached statistical significance (HR 0.69, CI 0.46-1.03; P = 0.07) and cancer-specific survival was significant (HR 0.55, CI 0.35-0.88; p=0.01). CONCLUSION: Addition of adjuvant chemotherapy to radiation improves progression-free survival in operated endometrial cancer patients with no residual tumour and high risk profile. A remaining question for future studies is if addition of radiotherapy to chemotherapy improves the results

    Prospective Longitudinal ctDNA Workflow Reveals Clinically Actionable Alterations in Ovarian Cancer

    Get PDF
    PURPOSE Circulating tumor DNA (ctDNA) detection is a minimally invasive technique that offers dynamic molecular snapshots of genomic alterations in cancer. Although ctDNA markers can be used for early detection of cancers or for monitoring treatment efficacy, the value of ctDNA in guiding treatment decisions in solid cancers is controversial. Here, we monitored ctDNA to detect clinically actionable alterations during treatment of high-grade serous ovarian cancer, the most common and aggressive form of epithelial ovarian cancer with a 5-year survival rate of 43%.PATIENTS AND METHODS We implemented a clinical ctDNA workflow to detect clinically actionable alterations in more than 500 cancer-related genes. We applied the workflow to a prospective cohort consisting of 78 ctDNA samples from 12 patients with high-grade serous ovarian cancer before, during, and after treatment. These longitudinal data sets were analyzed using our open-access ctDNA-tailored bioinformatics analysis pipeline and in-house Translational Oncology Knowledgebase to detect clinically actionable genomic alterations. The alterations were ranked according to the European Society for Medical Oncology scale for clinical actionability of molecular targets.RESULTS Our results show good concordance of mutations and copy number alterations in ctDNA and tumor samples, and alterations associated with clinically available drugs were detected in seven patients (58%). Treatment of one chemoresistant patient was changed on the basis of detection of ERBB2amplification, and this ctDNA-guided decision was followed by significant tumor shrinkage and complete normalization of the cancer antigen 125 tumor marker.CONCLUSION Our results demonstrate a proof of concept for using ctDNA to guide clinical decisions. Furthermore, our results show that longitudinal ctDNA samples can be used to identify poor-responding patients after first cycles of chemotherapy. We provide what we believe to be the first comprehensive, open-source ctDNA workflow for detecting clinically actionable alterations in solid cancers. (C) 2019 by American Society of Clinical Oncolog

    PCR-based zebrafish model for personalised medicine in head and neck cancer

    Get PDF
    BackgroundCurrently, in vivo model for personalised cancer drug testing is challenging. A zebrafish larvae xenograft model has been applied in recent years to cancer research, particularly for drug testing purposes, showing promising results in drug testing against patient-derived tumour xenografts. Currently, these xenograft models apply imaging techniques to measure drug efficacy. However, this method carries several limitations, including timely imaging, thereby reducing the available number of tested fish and drugs. Here, we propose a PCR-based fast assay to evaluate drug efficacy in a zebrafish larvae xenograft model.MethodsWe tested two primary and corresponding metastatic head and neck squamous cell carcinoma (HNSCC) cell lines and patient-derived tongue cancer sample applying zebrafish larvae xenograft model. Cisplatin efficacy was tested using imaging technique and compared the results with PCR-based methods. Drug screening of eight compounds was applied on both cell lines and patient sample using PCR.ResultsIn a head-to-head comparison, all the three techniques (imaging, quantitative PCR, and droplet digital PCR) showed similar reduction of the cancer cells growth after cisplatin treatment. Using the quantitative PCR assay, we demonstrated a dose-dependent response of HNSCC cells to cisplatin. Drug screening results of four HNSCC cell lines and patient sample revealed different drug efficacy between tested cancer cells.ConclusionWe introduce a novel, easy, fast and cost-effective PCR-based in vivo zebrafish larvae assay to test the response of cell lines and clinical tumour samples to anti-cancer drugs. This method goes hand-by-hand with the commonly used imaging assay.</p

    Human Tumor-Derived Matrix Improves the Predictability of Head and Neck Cancer Drug Testing

    Get PDF
    In vitro cancer drug testing carries a low predictive value. We developed the human leiomyoma–derived matrix “Myogel” to better mimic the human tumor microenvironment (TME). We hypothesized that Myogel could provide an appropriate microenvironment for cancer cells, thereby allowing more in vivo–relevant drug testing. We screened 19 anticancer compounds, targeting the epidermal growth factor receptor (EGFR), MEK, and PI3K/mTOR on 12 head and neck squamous cell carcinoma (HNSCC) cell lines cultured on plastic, mouse sarcoma–derived Matrigel (MSDM), and Myogel. We applied a high-throughput drug screening assay under five different culturing conditions: cells in two-dimensional (2D) plastic wells and on top or embedded in Matrigel or Myogel. We then compared the efficacy of the anticancer compounds to the response rates of 19 HNSCC monotherapy clinical trials. Cancer cells on top of Myogel responded less to EGFR and MEK inhibitors compared to cells cultured on plastic or Matrigel. However, we found a similar response to the PI3K/mTOR inhibitors under all culturing conditions. Cells grown on Myogel more closely resembled the response rates reported in EGFR-inhibitor monotherapy clinical trials. Our findings suggest that a human tumor matrix improves the predictability of in vitro anticancer drug testing compared to current 2D and MSDM methods</p

    Recurrent epigenetic silencing of the PTPRD tumor suppressor in laryngeal squamous cell carcinoma

    Get PDF
    Cellular processes like differentiation, mitotic cycle, and cell growth are regulated by tyrosine kinases with known oncogenic potential and tyrosine phosphatases that downmodulate the first. Therefore, tyrosine phosphatases are recurrent targets of gene alterations in human carcinomas. We and others suggested recently a tumor suppressor function of the PTPRD tyrosine phosphatase and reported homozygous deletions of the PTPRD locus in laryngeal squamous cell carcinoma. In this study, we investigated other gene-inactivating mechanisms potentially targeting PTPRD, including loss-of-function mutations and also epigenetic alterations like promoter DNA hypermethylation. We sequenced the PTPRD gene in eight laryngeal squamous cell carcinoma cell lines but did not identify any inactivating mutations. In contrast, by bisulfite pyrosequencing of the gene promoter region, we identified significantly higher levels of methylation (p = 0.001 and p = 0.0002, respectively) in 9/14 (64%) laryngeal squamous cell carcinoma cell lines and 37/79 (47%) of primary laryngeal squamous cell carcinoma tumors as compared to normal epithelium of the upper aerodigestive tract. There was also a strong correlation (p = 0.0001) between methylation and transcriptional silencing for the PTPRD gene observed in a cohort of 497 head and neck tumors from The Cancer Genome Atlas dataset suggesting that DNA methylation is the main mechanism of PTPRD silencing in these tumors. In summary, our data provide further evidence of the high incidence of PTPRD inactivation in laryngeal squamous cell carcinoma. We suggest that deletions and loss-of-function mutations are responsible for PTPRD loss only in a fraction of cases, whereas DNA methylation is the dominating mechanism of PTPRD inactivation.</p
    • …
    corecore