24 research outputs found

    TCF21 hypermethylation regulates renal tumor cell clonogenic proliferation and migration

    Get PDF
    We recently identified hypermethylation at the gene promoter of transcription factor 21 (TCF21) in clear cell sarcoma of the kidney (CCSK), a rare pediatric renal tumor. TCF21 is a transcription factor involved in tubular epithelial development of the kidney and is a candidate tumor suppressor. As there are no in vitro models of CCSK, we employed a well-established clear cell renal cell carcinoma (ccRCC) cell line, 786-O, which also manifests high methylation at the TCF21 promoter, with consequent low TCF21 expression. The tumor suppressor function of TCF21 has not been functionally addressed in ccRCC cells; we aimed to explore the functional potential of TCF21 expression in ccRCC cells in vitro. 786-O clones stably transfected with either pBABE-TCF21-HA construct or pBABE vector alone were functionally analyzed. We found that ectopic expression of TCF21 in 786-O cells results in a trend toward decreased cell proliferation (not significant) and significantly decreased migration compared with mock-transfected 786-O cells. Although the number of colonies established in colony formation assays was not different between 786-O clones, colony size was significantly reduced in 786-O cells expressing TCF21. To investigate whether the changes in migration were due to epithelial-to-mesenchymal transition changes, we interrogated the expression of selected epithelial and mesenchymal markers. Although we observed upregulation of mRNA and protein levels of epithelial marker E-cadherin in clones overexpressing TCF21, this did not result in surface expression of E-cadherin as measured by fluorescence-activated cell sorting and immunofluorescence. Furthermore, mRNA expression of the mesenchymal markers vimentin (VIM) and SNAI1 was not significantly decreased in TCF21-expressing 786-O cells, while protein levels of VIM were markedly decreased. We conclude that re-expression of TCF21 in renal cancer cells that have silenced their endogenous TCF21 locus through hypermethylation results in reduced clonogenic proliferation, reduced migration, and reduced mesenchymal-like characteristics, suggesting a tumor suppressor function for transcription factor 21

    The Transcription Factor Nrf2 Protects Angiogenic Capacity of Endothelial Colony-Forming Cells in High-Oxygen Radical Stress Conditions

    No full text
    Background. Endothelial colony forming cells (ECFCs) have shown a promise in tissue engineering of vascular constructs, where they act as endothelial progenitor cells. After implantation, ECFCs are likely to be subjected to elevated reactive oxygen species (ROS). The transcription factor Nrf2 regulates the expression of antioxidant enzymes in response to ROS. Methods. Stable knockdown of Nrf2 and Keap1 was achieved by transduction with lentiviral shRNAs; activation of Nrf2 was induced by incubation with sulforaphane (SFN). Expression of Nrf2 target genes was assessed by qPCR, oxidative stress was assessed using CM-DCFDA, and angiogenesis was quantified by scratch-wound and tubule-formation assays Results. Nrf2 knockdown led to a reduction of antioxidant gene expression and increased ROS. Angiogenesis was disturbed after Nrf2 knockdown even in the absence of ROS. Conversely, angiogenesis was preserved in high ROS conditions after knockdown of Keap1. Preincubation of ECFCs with SFN reduced intracellular ROS in the presence of H2O2 and preserved scratch-wound closure and tubule-formation. Conclusion. The results of this study indicate that Nrf2 plays an important role in the angiogenic capacity of ECFCs, particularly under conditions of increased oxidative stress. Pretreatment of ECFCs with SFN prior to implantation may be a protective strategy for tissue-engineered constructs or cell therapies

    The Transcription Factor Nrf2 Protects Angiogenic Capacity of Endothelial Colony-Forming Cells in High-Oxygen Radical Stress Conditions

    Get PDF
    Background. Endothelial colony forming cells (ECFCs) have shown a promise in tissue engineering of vascular constructs, where they act as endothelial progenitor cells. After implantation, ECFCs are likely to be subjected to elevated reactive oxygen species (ROS). The transcription factor Nrf2 regulates the expression of antioxidant enzymes in response to ROS. Methods. Stable knockdown of Nrf2 and Keap1 was achieved by transduction with lentiviral shRNAs; activation of Nrf2 was induced by incubation with sulforaphane (SFN). Expression of Nrf2 target genes was assessed by qPCR, oxidative stress was assessed using CM-DCFDA, and angiogenesis was quantified by scratch-wound and tubule-formation assays Results. Nrf2 knockdown led to a reduction of antioxidant gene expression and increased ROS. Angiogenesis was disturbed after Nrf2 knockdown even in the absence of ROS. Conversely, angiogenesis was preserved in high ROS conditions after knockdown of Keap1. Preincubation of ECFCs with SFN reduced intracellular ROS in the presence of H2O2 and preserved scratch-wound closure and tubule-formation. Conclusion. The results of this study indicate that Nrf2 plays an important role in the angiogenic capacity of ECFCs, particularly under conditions of increased oxidative stress. Pretreatment of ECFCs with SFN prior to implantation may be a protective strategy for tissue-engineered constructs or cell therapies

    Ex vivo exposure of bone marrow from chronic kidney disease donor rats to pravastatin limits renal damage in recipient rats with chronic kidney disease

    Get PDF
    INTRODUCTION: Healthy bone marrow cell (BMC) infusion improves renal function and limits renal injury in a model of chronic kidney disease (CKD) in rats. However, BMCs derived from rats with CKD fail to retain beneficial effects, demonstrating limited therapeutic efficacy. Statins have been reported to improve cellular repair mechanisms. METHODS: We studied whether exposing CKD rat BMCs ex vivo to pravastatin improved their in vivo therapeutic efficacy in CKD and compared this to systemic in vivo treatment. Six weeks after CKD induction, healthy BMCs, healthy pravastatin-pretreated BMCs, CKD BMCs or CKD pravastatin-pretreated BMCs were injected into the renal artery of CKD rats. RESULTS: At 6 weeks after BMC injection renal injury was reduced in pravastatin-pretreated CKD BMC recipients vs. CKD BMC recipients. Effective renal plasma flow was lower and filtration fraction was higher in CKD BMC recipients compared to all groups whereas there was no difference between pravastatin-pretreated CKD BMC and healthy BMC recipients. Mean arterial pressure was higher in CKD BMC recipients compared to all other groups. In contrast, 6 weeks of systemic in vivo pravastatin treatment had no effect. In vitro results showed improved migration, decreased apoptosis and lower excretion of pro-inflammatory Chemokine (C-X-C Motif) Ligand 5 in pravastatin-pretreated CKD BMCs. CONCLUSIONS: Short ex vivo exposure of CKD BMC to pravastatin improves CKD BMC function and their subsequent therapeutic efficacy in a CKD setting, whereas systemic statin treatment did not provide renal protection

    TCF21 hypermethylation regulates renal tumor cell clonogenic proliferation and migration

    No full text
    We recently identified hypermethylation at the gene promoter of transcription factor 21 (TCF21) in clear cell sarcoma of the kidney (CCSK), a rare pediatric renal tumor. TCF21 is a transcription factor involved in tubular epithelial development of the kidney and is a candidate tumor suppressor. As there are no in vitro models of CCSK, we employed a well-established clear cell renal cell carcinoma (ccRCC) cell line, 786-O, which also manifests high methylation at the TCF21 promoter, with consequent low TCF21 expression. The tumor suppressor function of TCF21 has not been functionally addressed in ccRCC cells; we aimed to explore the functional potential of TCF21 expression in ccRCC cells in vitro. 786-O clones stably transfected with either pBABE-TCF21-HA construct or pBABE vector alone were functionally analyzed. We found that ectopic expression of TCF21 in 786-O cells results in a trend toward decreased cell proliferation (not significant) and significantly decreased migration compared with mock-transfected 786-O cells. Although the number of colonies established in colony formation assays was not different between 786-O clones, colony size was significantly reduced in 786-O cells expressing TCF21. To investigate whether the changes in migration were due to epithelial-to-mesenchymal transition changes, we interrogated the expression of selected epithelial and mesenchymal markers. Although we observed upregulation of mRNA and protein levels of epithelial marker E-cadherin in clones overexpressing TCF21, this did not result in surface expression of E-cadherin as measured by fluorescence-activated cell sorting and immunofluorescence. Furthermore, mRNA expression of the mesenchymal markers vimentin (VIM) and SNAI1 was not significantly decreased in TCF21-expressing 786-O cells, while protein levels of VIM were markedly decreased. We conclude that re-expression of TCF21 in renal cancer cells that have silenced their endogenous TCF21 locus through hypermethylation results in reduced clonogenic proliferation, reduced migration, and reduced mesenchymal-like characteristics, suggesting a tumor suppressor function for transcription factor 21

    The in‐vitro biocompatibility of ureido‐pyrimidinone compounds and polymer degradation products

    No full text
    Supramolecular biomaterials based on ureido-pyrimidinone (UPy) moieties are versatile polymer materials as their function can be tailored to the application. These UPy-materials can be designed into polymer coatings, self-healing polymers, hydrogels and elastomers. The biocompatibility of UPy-based materials and their degradation products is a long-term success requirement for many regenerative medicine and biomedical applications. Earlier research has shown that UPy-based materials and polymers display no immediate toxic effects, but in-depth in-vitro studies on potential UPy-polymer degradation products have not been executed. Owing to their resemblance to naturally occurring purines and pyrimidines, UPy-compounds and their degradation products could potentially initiate an immune response or be mutagenic. Accordingly, 11 selected UPy-compounds were synthesized, and their effect on cell viability, wound healing, and their immunogenicity and potential mutagenic potential, were studied. We showed that low molecular weight degradation products of UPy-based biomaterials do not affect cell viability, nor do these interfere with several aspects of endothelial function including proliferation, angiogenic sprouting and cellular migration even in levels exceeding plausibly attainable concentrations. Furthermore, the compounds are neither immunogenic nor mutagenic, showing that UPy-biomaterials exhibit good biocompatibility in vitro, and could in principle be used in humans

    The in-vitro biocompatibility of ureido-pyrimidinone compounds and polymer degradation products

    No full text
    Supramolecular biomaterials based on ureido-pyrimidinone (UPy) moieties are versatile polymer materials as their function can be tailored to the application. These UPy-materials can be designed into polymer coatings, self-healing polymers, hydrogels and elastomers. The biocompatibility of UPy-based materials and their degradation products is a long-term success requirement for many regenerative medicine and biomedical applications. Earlier research has shown that UPy-based materials and polymers display no immediate toxic effects, but in-depth in-vitro studies on potential UPy-polymer degradation products have not been executed. Owing to their resemblance to naturally occurring purines and pyrimidines, UPy-compounds and their degradation products could potentially initiate an immune response or be mutagenic. Accordingly, 11 selected UPy-compounds were synthesized, and their effect on cell viability, wound healing, and their immunogenicity and potential mutagenic potential, were studied. We showed that low molecular weight degradation products of UPy-based biomaterials do not affect cell viability, nor do these interfere with several aspects of endothelial function including proliferation, angiogenic sprouting and cellular migration even in levels exceeding plausibly attainable concentrations. Furthermore, the compounds are neither immunogenic nor mutagenic, showing that UPy-biomaterials exhibit good biocompatibility in vitro, and could in principle be used in humans

    Bone Marrow Alterations and Lower Endothelial Progenitor Cell Numbers in Critical Limb Ischemia Patients

    Get PDF
    <div><h3>Background</h3><p>Critical limb ischemia (CLI) is characterized by lower extremity artery obstruction and a largely unexplained impaired ischemic neovascularization response. Bone marrow (BM) derived endothelial progenitor cells (EPC) contribute to neovascularization. We hypothesize that reduced levels and function of circulating progenitor cells and alterations in the BM contribute to impaired neovascularization in CLI.</p> <h3>Methods</h3><p>Levels of primitive (CD34<sup>+</sup> and CD133<sup>+</sup>) progenitors and CD34<sup>+</sup>KDR<sup>+</sup> EPC were analyzed using flow cytometry in blood and BM from 101 CLI patients in the JUVENTAS-trial (NCT00371371) and healthy controls. Blood levels of markers for endothelial injury (sE-selectin, sICAM-1, sVCAM-1, and thrombomodulin), and progenitor cell mobilizing and inflammatory factors were assessed by conventional and multiplex ELISA. BM levels and activity of the EPC mobilizing protease MMP-9 were assessed by ELISA and zymography. Circulating angiogenic cells (CAC) were cultured and their paracrine function was assessed.</p> <h3>Results</h3><p>Endothelial injury markers were higher in CLI (P<0.01). CLI patients had higher levels of VEGF, SDF-1α, SCF, G-CSF (P<0.05) and of IL-6, IL-8 and IP-10 (P<0.05). Circulating EPC and BM CD34<sup>+</sup> cells (P<0.05), lymphocytic expression of CXCR4 and CD26 in BM (P<0.05), and BM levels and activity of MMP-9 (P<0.01) were lower in CLI. Multivariate regression analysis showed an inverse association between IL-6 and BM CD34<sup>+</sup> cell levels (P = 0.007). CAC from CLI patients had reduced paracrine function (P<0.0001).</p> <h3>Conclusion</h3><p>CLI patients have reduced levels of circulating EPC, despite profound endothelial injury and an EPC mobilizing response. Moreover, CLI patients have lower BM CD34<sup>+</sup>-cell levels, which were inversely associated with the inflammatory marker IL-6, and lower BM MMP-9 levels and activity. The results of this study suggest that inflammation-induced BM exhaustion and a disturbed progenitor cell mobilization response due to reduced levels and activity of MMP-9 in the BM and alterations in the SDF-1α/CXCR4 interaction contribute to the attenuated neovascularization in CLI patients.</p> </div

    Conditioned medium obtained from CAC cultured from CLI patients has impaired paracrine effects.

    No full text
    <p>Data represent median and P75. Percentage of scratch wound closure stimulated with conditioned medium (CM) obtained from CLI derived CAC (n = 33) was significantly reduced (P<0.0001) compared to CM obtained from healthy control (HC; n = 25) derived CAC. Wound closure after stimulation with HC derived CM was equal to stimulation with a positive control (PC; n = 4). CAC serum free culture medium served as a negative control (NC; n = 4). * P<0.05, ** P<0.01.</p
    corecore