43 research outputs found
Decellularised skeletal muscles allow functional muscle regeneration by promoting host cell migration
Pathological conditions affecting skeletal muscle function may lead to irreversible volumetric
muscle loss (VML). Therapeutic approaches involving acellular matrices represent an
emerging and promising strategy to promote regeneration of skeletal muscle following injury.
Here we investigated the ability of three different decellularised skeletal muscle scaffolds to
support muscle regeneration in a xenogeneic immune-competent model of VML, in which
the EDL muscle was surgically resected. All implanted acellular matrices, used to replace
the resected muscles, were able to generate functional artificial muscles by promoting host
myogenic cell migration and differentiation, as well as nervous fibres, vascular networks, and
satellite cell (SC) homing. However, acellular tissue mainly composed of extracellular matrix
(ECM) allowed better myofibre three-dimensional (3D) organization and the restoration of
SC pool, when compared to scaffolds which also preserved muscular cytoskeletal
structures. Finally, we showed that fibroblasts are indispensable to promote efficient
migration and myogenesis by muscle stem cells across the scaffolds in vitro. This data strongly support the use of xenogeneic acellular muscles as device to treat VML conditions in absence of donor cell implementation, as well as in vitro model for studying cell interplay during myogenesis