6,245 research outputs found

    X-ray emission from the PSR B1259--63 system near apastron

    Get PDF
    The PSR B1259--63 system contains a 47 ms radio pulsar in a highly eccentric binary with a Be-star companion. Strongly time variable X-ray emission was reported from this system as the pulsar was near apastron in 1992-early 1993. The variability was primarily deduced from an apparent non-detection of the \psr system during a first pre-apastron \ros observation in February~1992. We have re-analyzed the \ros observations of the \psr system. Contrary to the results of a previous analysis, we find that the \psr system was detected by \ros during the first off-axis February~1992 observation. The intensity of the soft X-ray emission of the \psr system before and after the 1992 apastron appears to vary at most by a factor 2\sim 2. Our results sensibly constrain theoretical models of X-ray emission from the \psr system.Comment: LATEX, Accepted for publ. in ApJ

    Nuclei embedded in an electron gas

    Full text link
    The properties of nuclei embedded in an electron gas are studied within the relativistic mean-field approach. These studies are relevant for nuclear properties in astrophysical environments such as neutron-star crusts and supernova explosions. The electron gas is treated as a constant background in the Wigner-Seitz cell approximation. We investigate the stability of nuclei with respect to alpha and beta decay. Furthermore, the influence of the electronic background on spontaneous fission of heavy and superheavy nuclei is analyzed. We find that the presence of the electrons leads to stabilizing effects for both α\alpha decay and spontaneous fission for high electron densities. Furthermore, the screening effect shifts the proton dripline to more proton-rich nuclei, and the stability line with respect to beta decay is shifted to more neutron-rich nuclei. Implications for the creation and survival of very heavy nuclear systems are discussed.Comment: 35 pages, latex+ep

    On the stability of Bose-Fermi mixtures

    Full text link
    We consider the stability of a mixture of degenerate Bose and Fermi gases. Even though the bosons effectively repel each other the mixture can still collapse provided the Bose and Fermi gases attract each other strongly enough. For a given number of atoms and the strengths of the interactions between them we find the geometry of a maximally compact trap that supports the stable mixture. We compare a simple analytical estimation for the critical axial frequency of the trap with results based on the numerical solution of hydrodynamic equations for Bose-Fermi mixture.Comment: 4 pages, 3 figure

    Monte Carlo aided design of the inner muon veto detectors for the Double Chooz experiment

    Full text link
    The Double Chooz neutrino experiment aims to measure the last unknown neutrino mixing angle theta_13 using two identical detectors positioned at sites both near and far from the reactor cores of the Chooz nuclear power plant. To suppress correlated background induced by cosmic muons in the detectors, they are protected by veto detector systems. One of these systems is the inner muon veto. It is an active liquid scintillator based detector and instrumented with encapsulated photomultiplier tubes. In this paper we describe the Monte Carlo aided design process of the inner muon veto, that resulted in a detector configuration with 78 PMTs yielding an efficiency of 99.978 +- 0.004% for rejecting muon events and an efficiency of >98.98% for rejecting correlated events induced by muons. A veto detector of this design is currently used at the far detector site and will be built and incorporated as the muon identification system at the near site of the Double Chooz experiment

    Implications of new measurements of O-16 + p + C-12,13, N-14,15 for the abundances of C, N isotopes at the cosmic ray source

    Get PDF
    The fragmentation of a 225 MeV/n O-16 beam was investigated at the Bevalac. Preliminary cross sections for mass = 13, 14, 15 fragments are used to constrain the nuclear excitation functions employed in galactic propagation calculations. Comparison to cosmic ray isotonic data at low energies shows that in the cosmic ray source C-13/C approximately 2% and N-14/0=3-6%. No source abundance of N-15 is required with the current experimental results

    Colour-singlet strangelets at finite temperature

    Full text link
    Considering massless uu and dd quarks, and massive (150 MeV) ss quarks in a bag with the bag pressure constant B1/4=145B^{1/4} = 145 MeV, a colour-singlet grand canonical partition function is constructed for temperatures T=130T = 1-30 MeV. Then the stability of finite size strangelets is studied minimizing the free energy as a function of the radius of the bag. The colour-singlet restriction has several profound effects when compared to colour unprojected case: (1) Now bulk energy per baryon is increased by about 250250 MeV making the strange quark matter unbound. (2) The shell structures are more pronounced (deeper). (3) Positions of the shell closure are shifted to lower AA-values, the first deepest one occuring at A=2A=2, famous HH-particle ! (4) The shell structure at A=2A=2 vanishes only at T30T\sim 30 MeV, though for higher AA-values it happens so at T20T\sim 20 MeV.Comment: Revtex file(8 pages)+6 figures(ps files) available on request from first Autho
    corecore