666 research outputs found

    Methodological accuracy of image-based electron-density assessment using dual-energy computed tomography

    Full text link
    Purpose: Electron density is the most important tissue property influencing photon and ion dose distributions in radiotherapy patients. Dual-energy computed tomography (DECT) enables the determination of electron density by combining the information on photon attenuation obtained at two different tube voltages. Most algorithms suggested so far use the CT numbers provided after image reconstruction as input parameters, i.e. are imaged-based. To explore the accuracy that can be achieved with these approaches, we quantify the intrinsic methodological and calibration uncertainty of the seemingly simplest approach.Comment: 20 pages, 3 figures, 2 tables, pre-peer reviewed version, accepted by Medical Physic

    Efficient calculation of local dose distribution for response modelling in proton and ion beams

    Full text link
    We present an algorithm for fast and accurate computation of the local dose distribution in MeV beams of protons, carbon ions or other heavy-charged particles. It uses compound Poisson-process modelling of track interaction and succesive convolutions for fast computation. It can handle mixed particle fields over a wide range of fluences. Since the local dose distribution is the essential part of several approaches to model detector efficiency or cellular response it has potential use in ion-beam dosimetry and radiotherapy.Comment: 9 pages, 3 figure

    Resources of polarimetric sensitivity in spin noise spectroscopy

    Full text link
    We attract attention to the fact that the ultimate (shot-noise-limited) polarimetric sensitivity can be enhanced by orders of magnitude leaving the photon flux incident onto the photodetector on the same low level. This opportunity is of crucial importance for present-day spin noise spectroscopy, where a direct increase of sensitivity by increasing the probe beam power is strongly restricted by the admissible input power of the broadband photodetectors. The gain in sensitivity is achieved by replacing the 45-deg polarization geometry commonly used in conventional schemes with balanced detectors by geometries with stronger polarization extinction. The efficiency of these high-extinction polarization geometries with enhancement of the detected signal by more than an order of magnitude is demonstrated by measurements of the spin noise spectra of bulk n:GaAs in the spectral range 835-918 nm. It is shown that the inevitable growth of the probe beam power with the sensitivity gain makes spin noise spectroscopy much more perturbative, but, at the same time, opens up fresh opportunities for studying nonlinear interactions of strong light fields with spin ensembles.Comment: 8 pages, 9 figure

    Longitudinal and transversal spin dynamics of donor-bound electrons in fluorine-doped ZnSe: spin inertia versus Hanle effect

    Get PDF
    The spin dynamics of the strongly localized, donor-bound electrons in fluorine-doped ZnSe epilayers is studied by pump-probe Kerr rotation techniques. A method exploiting the spin inertia is developed and used to measure the longitudinal spin relaxation time, T1T_1, in a wide range of magnetic fields, temperatures, and pump densities. The T1T_1 time of the donor-bound electron spin of about 1.6 μ\mus remains nearly constant for external magnetic fields varied from zero up to 2.5 T (Faraday geometry) and in a temperature range 1.8451.8-45 K. The inhomogeneous spin dephasing time, T2=833T_2^*=8-33 ns, is measured using the resonant spin amplification and Hanle effects under pulsed and steady-state pumping, respectively. These findings impose severe restrictions on possible spin relaxation mechanisms.Comment: 10 pages, 7 figure
    corecore