62 research outputs found

    The positive impacts of Real-World Data on the challenges facing the evolution of biopharma.

    Get PDF
    Demand for healthcare services is unprecedented. Society is struggling to afford the cost. Pricing of biopharmaceutical products is under scrutiny, especially by payers and Health Technology Assessment agencies. As we discuss here, rapidly advancing technologies, such as Real-World Data (RWD), are being utilized to increase understanding of disease. RWD, when captured and analyzed, produces the Real-World Evidence (RWE) that underpins the economic case for innovative medicines. Furthermore, RWD can inform the understanding of disease, help identify new therapeutic intervention points, and improve the efficiency of research and development (R&D), especially clinical trials. Pursuing precompetitive collaborations to define shared requirements for the use of RWD would equip service-providers with the specifications needed to implement cloud-based solutions for RWD acquisition, management and analysis. Only this approach would deliver cost-effective solutions to an industry-wide problem

    Resveratrol Targeting of Carcinogen-Induced Brain Endothelial Cell Inflammation Biomarkers MMP-9 and COX-2 is Sirt1-Independent

    Get PDF
    The occurrence of a functional relationship between the release of metalloproteinases (MMPs) and the expression of cyclooxygenase (COX)-2, two inducible pro-inflammatory biomarkers with important pro-angiogenic effects, has recently been inferred. While brain endothelial cells play an essential role as structural and functional components of the blood-brain barrier (BBB), increased BBB breakdown is thought to be linked to neuroinflammation. Chemopreventive mechanisms targeting both MMPs and COX-2 however remain poorly investigated. In this study, we evaluated the pharmacological targeting of Sirt1 by the diet-derived and antiinflammatory polyphenol resveratrol. Total RNA, cell lysates, and conditioned culture media from human brain microvascular endothelial cells (HBMEC) were analyzed using qRT-PCR, immunoblotting, and zymography respectively. Tissue scan microarray analysis of grade I–IV brain tumours cDNA revealed increased gene expression of Sirt-1 from grade I–III but surprisingly not in grade IV brain tumours. HBMEC were treated with a combination of resveratrol and phorbol 12-myristate 13-acetate (PMA), a carcinogen known to increase MMP-9 and COX-2 through NF-κB. We found that resveratrol efficiently reversed the PMA-induced MMP-9 secretion and COX-2 expression. Gene silencing of Sirt1, a critical modulator of angiogenesis and putative target of resveratrol, did not lead to significant reversal of MMP-9 and COX-2 inhibition. Decreased resveratrol inhibitory potential of carcinogen-induced IκB phosphorylation in siSirt1-transfected HBMEC was however observed. Our results suggest that resveratrol may prevent BBB disruption during neuroinflammation by inhibiting MMP-9 and COX-2 and act as a pharmacological NF-κB signal transduction inhibitor independent of Sirt1

    Porphyromonas gingivalis–dendritic cell interactions: consequences for coronary artery disease

    Get PDF
    An estimated 80 million US adults have one or more types of cardiovascular diseases. Atherosclerosis is the single most important contributor to cardiovascular diseases; however, only 50% of atherosclerosis patients have currently identified risk factors. Chronic periodontitis, a common inflammatory disease, is linked to an increased cardiovascular risk. Dendritic cells (DCs) are potent antigen presenting cells that infiltrate arterial walls and may destabilize atherosclerotic plaques in cardiovascular disease. While the source of these DCs in atherosclerotic plaques is presently unclear, we propose that dermal DCs from peripheral inflamed sites such as CP tissues are a potential source. This review will examine the role of the opportunistic oral pathogen Porphyromonas gingivalis in invading DCs and stimulating their mobilization and misdirection through the bloodstream. Based on our published observations, combined with some new data, as well as a focused review of the literature we will propose a model for how P. gingivalis may exploit DCs to gain access to systemic circulation and contribute to coronary artery disease. Our published evidence supports a significant role for P. gingivalis in subverting normal DC function, promoting a semimature, highly migratory, and immunosuppressive DC phenotype that contributes to the inflammatory development of atherosclerosis and, eventually, plaque rupture

    Listeria monocytogenes Internalin B Activates Junctional Endocytosis to Accelerate Intestinal Invasion

    Get PDF
    Listeria monocytogenes (Lm) uses InlA to invade the tips of the intestinal villi, a location at which cell extrusion generates a transient defect in epithelial polarity that exposes the receptor for InlA, E-cadherin, on the cell surface. As the dying cell is removed from the epithelium, the surrounding cells reorganize to form a multicellular junction (MCJ) that Lm exploits to find its basolateral receptor and invade. By examining individual infected villi using 3D-confocal imaging, we uncovered a novel role for the second major invasin, InlB, during invasion of the intestine. We infected mice intragastrically with isogenic strains of Lm that express or lack InlB and that have a modified InlA capable of binding murine E-cadherin and found that Lm lacking InlB invade the same number of villi but have decreased numbers of bacteria within each infected villus tip. We studied the mechanism of InlB action at the MCJs of polarized MDCK monolayers and find that InlB does not act as an adhesin, but instead accelerates bacterial internalization after attachment. InlB locally activates its receptor, c-Met, and increases endocytosis of junctional components, including E-cadherin. We show that MCJs are naturally more endocytic than other sites of the apical membrane, that endocytosis and Lm invasion of MCJs depends on functional dynamin, and that c-Met activation by soluble InlB or hepatocyte growth factor (HGF) increases MCJ endocytosis. Also, in vivo, InlB applied through the intestinal lumen increases endocytosis at the villus tips. Our findings demonstrate a two-step mechanism of synergy between Lm's invasins: InlA provides the specificity of Lm adhesion to MCJs at the villus tips and InlB locally activates c-Met to accelerate junctional endocytosis and bacterial invasion of the intestine

    High sensitivity organic inorganic hybrid X-ray detectors with direct transduction and broadband response

    Get PDF
    X-ray detectors are critical to healthcare diagnostics, cancer therapy and homeland security, with many potential uses limited by system cost and/or detector dimensions. Current X-ray detector sensitivities are limited by the bulk X-ray attenuation of the materials and consequently necessitate thick crystals (~1 mm-1 cm), resulting in rigid structures, high operational voltages and high cost. Here we present a disruptive, flexible, low cost, broadband, and high sensitivity direct X-ray transduction technology produced by embedding high atomic number bismuth oxide nanoparticles in an organic bulk heterojunction. These hybrid detectors demonstrate sensitivities of 1712 µC mGy-1 cm-3 for "soft" X-rays and ~30 and 58 µC mGy-1 cm-3 under 6 and 15 MV "hard" X-rays generated from a medical linear accelerator; strongly competing with the current solid state detectors, all achieved at low bias voltages (-10 V) and low power, enabling detector operation powered by coin cell batteries

    Listeria pathogenesis and molecular virulence determinants

    Get PDF
    The gram-positive bacterium Listeria monocytogenes is the causative agent of listeriosis, a highly fatal opportunistic foodborne infection. Pregnant women, neonates, the elderly, and debilitated or immunocompromised patients in general are predominantly affected, although the disease can also develop in normal individuals. Clinical manifestations of invasive listeriosis are usually severe and include abortion, sepsis, and meningoencephalitis. Listeriosis can also manifest as a febrile gastroenteritis syndrome. In addition to humans, L. monocytogenes affects many vertebrate species, including birds. Listeria ivanovii, a second pathogenic species of the genus, is specific for ruminants. Our current view of the pathophysiology of listeriosis derives largely from studies with the mouse infection model. Pathogenic listeriae enter the host primarily through the intestine. The liver is thought to be their first target organ after intestinal translocation. In the liver, listeriae actively multiply until the infection is controlled by a cell-mediated immune response. This initial, subclinical step of listeriosis is thought to be common due to the frequent presence of pathogenic L. monocytogenes in food. In normal indivuals, the continual exposure to listerial antigens probably contributes to the maintenance of anti-Listeria memory T cells. However, in debilitated and immunocompromised patients, the unrestricted proliferation of listeriae in the liver may result in prolonged low-level bacteremia, leading to invasion of the preferred secondary target organs (the brain and the gravid uterus) and to overt clinical disease. L. monocytogenes and L. ivanovii are facultative intracellular parasites able to survive in macrophages and to invade a variety of normally nonphagocytic cells, such as epithelial cells, hepatocytes, and endothelial cells. In all these cell types, pathogenic listeriae go through an intracellular life cycle involving early escape from the phagocytic vacuole, rapid intracytoplasmic multiplication, bacterially induced actin-based motility, and direct spread to neighboring cells, in which they reinitiate the cycle. In this way, listeriae disseminate in host tissues sheltered from the humoral arm of the immune system. Over the last 15 years, a number of virulence factors involved in key steps of this intracellular life cycle have been identified. This review describes in detail the molecular determinants of Listeria virulence and their mechanism of action and summarizes the current knowledge on the pathophysiology of listeriosis and the cell biology and host cell responses to Listeria infection. This article provides an updated perspective of the development of our understanding of Listeria pathogenesis from the first molecular genetic analyses of virulence mechanisms reported in 1985 until the start of the genomic era of Listeria research

    Growth of thick films CdTe from the vapor phase

    No full text
    CdTe films with a thickness of 100 µm were grown by molecular beam epitaxy (MBE) on semi-insulating LEC GaAs (0 0 1) substrates. The films were characterized by X-ray diffraction (XRD), photoluminescence (PL), X-ray photoelectron spectroscopy (XPS), I/V characteristics and detector measurements using a 241Am source. The grown layers were highly oriented as revealed from X-ray pole figure measurements and high-resolution XRD experiments. Low temperature PL measurements showed the formation of A-center complexes including Ga and In acting as donors. Furthermore, the distribution of these impurities in the films was determined by spatially resolved PL measurements. XPS demonstrates the formation of a TeO2 overlayer due to Cd depletion at the surface of the films. The electrical measurements including I/V characteristics and detector measurements resulted in resistivity values of around 3×10(exp 8) ohm cm and a µt product of electrons of 10(exp -5) cm2/V
    corecore