83 research outputs found

    The impact of baryons on the direct detection of dark matter

    Full text link
    The spatial and velocity distributions of dark matter particles in the Milky Way Halo affect the signals expected to be observed in searches for dark matter. Results from direct detection experiments are often analyzed assuming a simple isothermal distribution of dark matter, the Standard Halo Model (SHM). Yet there has been skepticism regarding the validity of this simple model due to the complicated gravitational collapse and merger history of actual galaxies. In this paper we compare the SHM to the results of cosmological hydrodynamical simulations of galaxy formation to investigate whether or not the SHM is a good representation of the true WIMP distribution in the analysis of direct detection data. We examine two Milky Way-like galaxies from the MaGICC cosmological simulations (a) with dark matter only and (b) with baryonic physics included. The inclusion of baryons drives the shape of the DM halo to become more spherical and makes the velocity distribution of dark matter particles less anisotropic especially at large heliocentric velocities, thereby making the SHM a better fit. We also note that we do not find a significant disk-like rotating dark matter component in either of the two galaxy halos with baryons that we examine, suggesting that dark disks are not a generic prediction of cosmological hydrodynamical simulations. We conclude that in the Solar neighborhood, the SHM is in fact a good approximation to the true dark matter distribution in these cosmological simulations (with baryons) which are reasonable representations of the Milky Way, and hence can also be used for the purpose of dark matter direct detection calculations.Comment: Minor changes to match JCAP version. 21 pages, 9 figure

    MaGICC-WDM: the effects of warm dark matter in hydrodynamical simulations of disc galaxy formation

    Full text link
    We study the effect of warm dark matter (WDM) on hydrodynamic simulations of galaxy formation as part of the Making Galaxies in a Cosmological Context (MaGICC) project. We simulate three different galaxies using three WDM candidates of 1, 2 and 5 keV and compare results with pure cold dark matter simulations. WDM slightly reduces star formation and produces less centrally concentrated stellar profiles. These effects are most evident for the 1 keV candidate but almost disappear for mWDM>2m_{\mathrm{WDM}}>2 keV. All simulations form similar stellar discs independent of WDM particle mass. In particular, the disc scale length does not change when WDM is considered. The reduced amount of star formation in the case of 1 keV particles is due to the effects of WDM on merging satellites which are on average less concentrated and less gas rich. The altered satellites cause a reduced starburst during mergers because they trigger weaker disc instabilities in the main galaxy. Nevertheless we show that disc galaxy evolution is much more sensitive to stellar feedback than it is to WDM candidate mass. Overall we find that WDM, especially when restricted to current observational constraints (mWDM>2m_{\mathrm{WDM}}>2 keV), has a minor impact on disc galaxy formation.Comment: 13 pages, 9 figures, 2 tables; minor clarifications added in results section, conclusions unchanged; accepted for publication in MNRA

    Magnetic White Dwarfs from the SDSS II. The Second and Third Data Releases

    Full text link
    Fifty-two magnetic white dwarfs have been identified in spectroscopic observations from the Sloan Digital Sky Survey (SDSS) obtained between mid-2002 and the end of 2004, including Data Releases 2 and 3. Though not as numerous nor as diverse as the discoveries from the first Data Release, the collection exhibits polar field strengths ranging from 1.5MG to ~1000MG, and includes two new unusual atomic DQA examples, a molecular DQ, and five stars that show hydrogen in fields above 500MG. The highest-field example, SDSSJ2346+3853, may be the most strongly magnetic white dwarf yet discovered. Analysis of the photometric data indicates that the magnetic sample spans the same temperature range as for nonmagnetic white dwarfs from the SDSS, and support is found for previous claims that magnetic white dwarfs tend to have larger masses than their nonmagnetic counterparts. A glaring exception to this trend is the apparently low-gravity object SDSSJ0933+1022, which may have a history involving a close binary companion.Comment: 20 pages, 4 figures Accepted for publication in the Astronomical Journa

    NIHAO XVI: The properties and evolution of kinematically selected discs, bulges and stellar haloes

    Full text link
    We use 25 simulated galaxies from the NIHAO project to define and characterize a variety of kinematic stellar structures: thin and thick discs, large scale single discs, classical and pseudo bulges, spheroids, inner discs, and stellar haloes. These structures have masses, spins, shapes and rotational support in good agreement with theoretical expectations and observational data. Above a dark matter halo mass of 2.5×10 11M⊙2.5\times10^{\rm~11}M_{\rm\odot}, all galaxies have a classical bulge and 70\% have a thin and thick disc. The kinematic (thin) discs follow a power-law relation between angular momentum and stellar mass J∗=3.4M∗1.26±0.06J_{\rm *}=3.4M_{\rm *}^{\rm1.26\pm0.06}, in very good agreement with the prediction based on the empirical stellar-to-halo mass relation in the same mass range, and show a strong correlation between maximum `observed' rotation velocity and dark matter halo circular velocity vc=6.4vmax0.64±0.04v_{\rm c}=6.4v_{\rm max}^{0.64\pm0.04}. Tracing back in time these structures' progenitors, we find all to lose a fraction 1−fj1-f_j of their maximum angular momentum. Thin discs are significantly better at retaining their high-redshift spins (fj∼0.70f_j\sim0.70) than thick ones (fj∼0.40f_j\sim0.40). Stellar haloes have their progenitor baryons assembled the latest (z 1/2∼1.1z_{\rm~1/2}\sim1.1) and over the longest timescales (τ∼6.2\tau\sim6.2~Gyr), and have the smallest fraction of stars born in-situ (fin−situ=0.35±0.14f_{\rm in-situ}=0.35\pm0.14). All other structures have 1.5≲z1/2≲31.5\lesssim z_{\rm1/2}\lesssim3, τ=4±2\tau=4\pm2~Gyr and fin−situ≳0.9f_{\rm in-situ}\gtrsim0.9.Comment: Accepted by MNRAS. First application of the methods described in arXiv:1804.0557

    Is there Evidence for Flat Cores in the Halos of Dwarf Galaxies?: The Case of NGC 3109 and NGC 6822

    Full text link
    Two well studied dwarf galaxies -- NGC 3109 and NGC 6822 -- present some of the strongest observational support for a flat core at the center of galactic dark matter (DM) halos. We use detailed cosmologically motivated numerical models to investigate the systematics and the accuracy of recovering parameters of the galaxies. Some of our models match the observed structure of the two galaxies remarkably well. Our analysis shows that the rotation curves of these two galaxies are instead quite compatible with their DM halos having steep cuspy density profiles. The rotation curves in our models are measured using standard observational techniques. The models reproduce the rotation curves of both galaxies, the disk surface brightness profiles as well as the profile of isophotal ellipticity and position angle. The models are centrally dominated by baryons; however, the dark matter component is globally dominant. The simulated disk mass is marginally consistent with a stellar mass-to-light ratio in agreement with the observed colors. We show that non-circular motions combined with gas pressure support and projection effects results in a large underestimation of the circular velocity in the central ∼1\sim 1 kpc region, creating the illusion of a constant density core. Although the systematic effects mentioned above are stronger in barred systems, they are also present in axisymetric disks. Our results strongly suggest that there is no contradiction between the observed rotation curves in dwarf galaxies and the cuspy central dark matter density profiles predicted by Cold Dark Matter models.Comment: Accepted for publication in the ApJ. New discussion, figures and one appendix. High resolution version at:http://www.astro.washington.edu/octavio/N3109_paper.ps.g
    • …
    corecore