253 research outputs found
Real single ion solvation free energies with quantum mechanical simulation
Single ion solvation free energies are one of the most important properties
of electrolyte solutions and yet there is ongoing debate about what these
values are. Only the values for neutral ion pairs are known. Here, we use DFT
interaction potentials with molecular dynamics simulation (DFT-MD) combined
with a modified version of the quasi-chemical theory (QCT) to calculate these
energies for the lithium and fluoride ions. A method to correct for the error
in the DFT functional is developed and very good agreement with the
experimental value for the lithium fluoride pair is obtained. Moreover, this
method partitions the energies into physically intuitive terms such as surface
potential, cavity and charging energies which are amenable to descriptions with
reduced models. Our research suggests that lithium's solvation free energy is
dominated by the free energetics of a charged hard sphere, whereas fluoride
exhibits significant quantum mechanical behavior that cannot be simply
described with a reduced model.Comment: 13 pages, 4 figure
Electrostatic solvation free energies of charged hard spheres using molecular dynamics with density functional theory interactions
Determining the solvation free energies of single ions in water is one of the
most fundamental problems in physical chemistry and yet many unresolved
questions remain. In particular, the ability to decompose the solvation free
energy into simple and intuitive contributions will have important implications
for models of electrolyte solution. Here, we provide definitions of the various
types of single ion solvation free energies based on different simulation
protocols. We calculate solvation free energies of charged hard spheres using
density functional theory interaction potentials with molecular dynamics
simulation (DFT-MD) and isolate the effects of charge and cavitation, comparing
to the Born (linear response) model. We show that using uncorrected Ewald
summation leads to unphysical values for the single ion solvation free energy
and that charging free energies for cations are approximately linear as a
function of charge but that there is a small non-linearity for small anions.
The charge hydration asymmetry (CHA) for hard spheres, determined with quantum
mechanics, is much larger than for the analogous real ions. This suggests that
real ions, particularly anions, are significantly more complex than simple
charged hard spheres, a commonly employed representation.Comment: 28 pages, 5 figure
Eph Receptors and Ephrin Signaling Pathways: A Role in Bone Homeostasis
The maintenance of bone homeostasis is tightly controlled, and largely dependent upon cellular communication between osteoclasts and osteoblasts, and the coupling of bone resorption to bone formation. This tight coupling is essential for the correct function and maintenance of the skeletal system, repairing microscopic skeletal damage and replacing aged bone. A range of pathologic diseases, including osteoporosis and cancer-induced bone disease, disrupt this coupling and cause subsequent alterations in bone homeostasis. Eph receptors and their associated ligands, ephrins, play critical roles in a number of cellular processes including immune regulation, neuronal development and cancer metastasis. Eph receptors are also expressed by cells found within the bone marrow microenvironment, including osteoclasts and osteoblasts, and there is increasing evidence to implicate this family of receptors in the control of normal and pathological bone remodeling
Smoothed Dissipative Particle Dynamics model for mesoscopic multiphase flows in the presence of thermal fluctuations
Thermal fluctuations cause perturbations of fluid-fluid interfaces and highly
nonlinear hydrodynamics in multiphase flows. In this work, we develop a novel
multiphase smoothed dissipative particle dynamics model. This model accounts
for both bulk hydrodynamics and interfacial fluctuations. Interfacial surface
tension is modeled by imposing a pairwise force between SDPD particles. We show
that the relationship between the model parameters and surface tension,
previously derived under the assumption of zero thermal fluctuation, is
accurate for fluid systems at low temperature but overestimates the surface
tension for intermediate and large thermal fluctuations. To analyze the effect
of thermal fluctuations on surface tension, we construct a coarse-grained Euler
lattice model based on the mean field theory and derive a semi-analytical
formula to directly relate the surface tension to model parameters for a wide
range of temperatures and model resolutions. We demonstrate that the present
method correctly models the dynamic processes, such as bubble coalescence and
capillary spectra across the interface
Gr-1+CD11b+ Myeloid-Derived Suppressor Cells: Formidable Partners in Tumor Metastasis
The growth and metastasis of solid tumors not only depends on their ability to escape from immune surveillance but also hinges on their ability to invade the vasculature system as well as to induce the formation of new blood vessels. Gr-1+CD11b+ myeloid-derived suppressor cells (MDSCs), overproduced in tumor-bearing hosts, contribute significantly to all these aspects. They also have a potential role in the osteolysis associated with bone metastases. They are formidable partners in tumor metastasis. © 2010 American Society for Bone and Mineral Research
Mass Density Fluctuations in Quantum and Classical descriptions of Liquid Water
First principles molecular dynamics simulation protocol is established using
revised functional of Perdew-Burke-Ernzerhof (revPBE) in conjunction with
Grimme's third generation of dispersion (D3) correction to describe properties
of water at ambient conditions. This study also demonstrates the consistency of
the structure of water across both isobaric (NpT) and isothermal (NVT)
ensembles. Going beyond the standard structural benchmarks for liquid water, we
compute properties that are connected to both local structure and mass density
uctuations that are related to concepts of solvation and hydrophobicity. We
directly compare our revPBE results to the Becke-Lee-Yang-Parr (BLYP) plus
Grimme dispersion corrections (D2) and both the empirical fixed charged model
(SPC/E) and many body interaction potential model (MB-pol) to further our
understanding of how the computed properties herein depend on the form of the
interaction potential
Recommended from our members
Methods for treating bone deficit conditions with benzothiazole
" Compounds containing two aromatic systems covalently linked through a linker containing one or more atoms, or ""linker"" defined as including a covalent bond per se so as to space the aromatic systems at a distance 1.5-15 .ANG., are effective in treating conditions associated with bone deficits. The compounds can be administered to vertebrate subjects alone or in combination with additional agents that promote bone growth or that inhibit bone resorption. They can be screened for activity prior to administration by assessing their ability to effect the transcription of a reporter gene coupled to a promoter associated with a bone morphogenetic protein and/or their ability to stimulate calvarial growth in model animal systems. "Board of Regents, University of Texas Syste
Bulgac-Kusnezov-Nos\'e-Hoover thermostats
In this paper we formulate Bulgac-Kusnezov constant temperature dynamics in
phase space by means of non-Hamiltonian brackets. Two generalized versions of
the dynamics are similarly defined: one where the Bulgac-Kusnezov demons are
globally controlled by means of a single additional Nos\'e variable, and
another where each demon is coupled to an independent Nos\'e-Hoover thermostat.
Numerically stable and efficient measure-preserving time-reversible algorithms
are derived in a systematic way for each case. The chaotic properties of the
different phase space flows are numerically illustrated through the
paradigmatic example of the one-dimensional harmonic oscillator. It is found
that, while the simple Bulgac-Kusnezov thermostat is apparently not ergodic,
both of the Nos\'e-Hoover controlled dynamics sample the canonical distribution
correctly
- …