29 research outputs found

    Tumor-responsive, multifunctional CAR-NK cells cooperate with impaired autophagy to infiltrate and target glioblastoma

    Get PDF
    Tumor antigen heterogeneity, a severely immunosuppressive tumor microenvironment (TME) and lymphopenia resulting in inadequate immune intratumoral trafficking have rendered glioblastoma (GBM) highly resistant to therapy. As a result, GBM immunotherapies have failed to demonstrate sustained clinical improvements in patient overall survival (OS). To overcome these obstacles, here we describe a novel, sophisticated combinatorial platform for GBM: the first multifunctional immunotherapy based on genetically-engineered, human NK cells bearing multiple anti-tumor functions, including local tumor responsiveness, that addresses key drivers of GBM resistance to therapy: antigen escape, poor immune cell homing, and immunometabolic reprogramming of immune responses. We engineered dual-specific CAR-NK cells to bear a third functional moiety that is activated in the GBM TME and addresses immunometabolic suppression of NK cell function: a tumor-specific, locally-released antibody fragment which can inhibit the activity of CD73 independently of CAR signaling and decrease the local concentration of adenosine. The multifunctional human NK cells targeted patient-derived GBM xenografts, demonstrated local tumor site specific activity in the tissue and potently suppressed adenosine production. We also unveil a complex reorganization of the immunological profile of GBM induced by inhibiting autophagy. Pharmacologic impairment of the autophagic process not only sensitized GBM to antigenic targeting by NK cells, but promoted a chemotactic profile favorable to NK infiltration. Taken together, our study demonstrates a promising new NK cell-based combinatorial strategy that can target multiple clinically-recognized mechanisms of GBM progression simultaneously

    Direct Evidence that Saquinavir Is Transported by Multidrug Resistance-Associated Protein (MRP1) and Canalicular Multispecific Organic Anion Transporter (MRP2)

    No full text
    To determine if saquinavir mesylate (saquinavir) is a substrate of human multidrug resistance-associated protein 1 (hMRP1 [ABCC1]) or hMRP2 (cMOAT, or ABCC2), MDCKII cells that overexpress either hMRP1 (MDCKII-MRP1) or hMRP2 (MDCKII-MRP2) were used to investigate saquinavir's cytotoxicity and transport in comparison with those of control MDCKII wild-type (MDCKII/wt) cells. Cytotoxicity was assessed with the mitochondrial marker MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium], and saquinavir transport was measured directly through the cell monolayers. GF120918 (an inhibitor of P glycoprotein, but not of the MRP family) and MK-571 (an MRP family inhibitor) were used to delineate the specific contributions of these transporters to saquinavir cytotoxicity and transport. In the presence of GF120918 and increasing saquinavir concentrations, the MDCKII-MRP1 (50% lethal dose [LD(50)] = 10.5 μM) and MDCKII-MRP2 (LD(50) = 27.1 μM) cell lines exhibited statistically greater viability than the MDCKII/wt cells (LD(50) = 7.8 μM). Saquinavir efflux was directional, not saturable, and was inhibited by MK-571 (35 and 75 μM) in all cell lines. The ratios of saquinavir (3 μM) basolateral to apical permeability (i.e., efflux ratios) for the MDCKII/wt, MDCKII-MRP1, and MDCKII-MRP2 cell monolayers were 2.6, 1.8, and 6.8, respectively. The MDCKII-MRP1 cells have a significantly reduced saquinavir efflux ratio relative to MDCKII/wt cells, due to basolaterally directed transport by hMRP1 competing with endogenous, apically directed canine MRP2. The MDCKII-MRP2 cells have a significantly increased saquinavir efflux ratio relative to MDCKII/wt cells, due to the additive effects of the apically directed transport by hMRP2 and endogenous MRP2. Collectively, the cytotoxicity and transport results provide direct evidence that saquinavir is transported by MRP1 and MRP2

    Evaluation of 25% Poloxamer As a Slow Release Carrier for Morphine in a Rat Model

    No full text
    The objectives of this study were to evaluate poloxamer as a slow release carrier for morphine (M) and potential tissue irritation after subcutaneous poloxamer–morphine (PM) injection in a rat model. Based on the result of a previous in vitro work, 25% poloxamer, with and without morphine, and saline were administered in 14 rats’ flanks. Blood for morphine concentrations was automatically sampled at multiple preprogrammed time points using the Culex™ unit for 48 h. Skin tissues from the injection sites were harvested and evaluated for histopathological changes. Following M or PM administration, it was determined that the half-life (t1/2) was significantly longer in the PM (5.5 ± 7.2 h) than M (0.7 ± 0.8 h) indicated a slow dissolution of poloxamer with morphine. The tmax was within 15 min and Cmax was approximately three times higher with M than with PM, reaching 716.8 (±153.7 ng/ml) of plasma morphine concentrations. There was no significant difference in total area under the curve and clearance of M versus PM. Histology inflammatory scores were similar between M, PM, and poloxamer but were significantly higher than saline control. We concluded that 25% poloxamer was capable of increasing the t1/2 of morphine, without a significant tissue irritation

    Persistent Pharmacokinetic Challenges to Pediatric Drug Development

    No full text
    The development of new therapeutic agents for the mitigation of pediatric disorders is largely hindered by the inability for investigators to assess pediatric pharmacokinetics (PK) in healthy patients due to substantial safety concerns. Pediatric patients are a clinical moving target for drug delivery due to changes in absorption, distribution, metabolism and excretion (ADME) and the potential for PK related toxicological (T) events to occur throughout development. These changes in ADMET can have profound effects on drug delivery, and may lead to toxic or sub-therapeutic outcomes. Ethical, economical, logistical, and technical barriers have resulted in insufficient investigation of these changes by industrial, regulatory, and academic bodies, leading to the classification of pediatric patients as therapeutic orphans. In response to these concerns, regulatory agencies have incentivized investigation into these ontogenic changes and their effects on drug delivery in pediatric populations. The intent of this review is to briefly present a synopsis of the development changes that occur in pediatric patients, discuss the effects of these changes on ADME and drug delivery strategies, highlight the hurdles that are still being faced, and present some opportunities to overcome these challenges

    The effects of excipients on transporter mediated absorption.

    No full text
    Traditionally most pharmaceutical excipients used for peroral dosage forms have been considered to be inert, although they have been known to play an important role in governing the release of the active pharmaceutical ingredient (API) required for the desired therapeutic effect. Of considerable interest is the emerging data demonstrating that many of these "inert" excipients may produce subtle changes that could directly or indirectly alter the activity of membrane-spanning proteins such as transporters. In this way, excipients could be altering the overall ADMET properties of an incorporated drug thereby affecting its intended therapeutic efficacy and/or enhancing adverse side effects. Therefore, given this recent evidence, it seems necessary to review what has been reported in the literature on interactions of excipients with human physiological entities, particularly transporters. As of today, safety/toxicity evaluations are typically based on the appearance of gross morphological changes rather than the effects on a cellular level, the ability of excipients in modifying the pharmacological activity of an active drug could lead to toxicity evaluation in routine for each additive used in oral formulations. Further knowledge on this subject will enable formulators to make more rational decisions in dosage form design and will help answer the question of whether certain excipients should be considered active pharmaceutical components of formulations.Journal ArticleReviewSCOPUS: re.jinfo:eu-repo/semantics/publishe
    corecore