2,798 research outputs found

    Planetary systems around close binary stars: the case of the very dusty, Sun-like, spectroscopic binary BD+20 307

    Get PDF
    Field star BD+20 307 is the dustiest known main sequence star, based on the fraction of its bolometric luminosity, 4%, that is emitted at infrared wavelengths. The particles that carry this large IR luminosity are unusually warm, comparable to the temperature of the zodiacal dust in the solar system, and their existence is likely to be a consequence of a fairly recent collision of large objects such as planets or planetary embryos. Thus, the age of BD+20 307 is potentially of interest in constraining the era of terrestrial planet formation. The present project was initiated with an attempt to derive this age using the Chandra X-ray Observatory to measure the X-ray flux of BD+20 307 in conjunction with extensive photometric and spectroscopic monitoring observations from Fairborn Observatory. However, the recent realization that BD+20 307 is a short period, double-line, spectroscopic binary whose components have very different lithium abundances, vitiates standard methods of age determination. We find the system to be metal-poor; this, combined with its measured lithium abundances, indicates that BD+20 307 may be several to many Gyr old. BD+20 307 affords astronomy a rare peek into a mature planetary system in orbit around a close binary star (because such systems are not amenable to study by the precision radial velocity technique).Comment: accepted for ApJ, December 10, 200

    Two Jovian-Mass Planets in Earthlike Orbits

    Get PDF
    We report the discovery of two new planets: a 1.94 M_Jup planet in a 1.8-year orbit of HD 5319, and a 2.51 M_Jup planet in a 1.1-year orbit of HD 75898. The measured eccentricities are 0.12 for HD 5319 b and 0.10 for HD 75898 b, and Markov Chain Monte Carlo simulations based on derived orbital parameters indicate that the radial velocities of both stars are consistent with circular planet orbits. With low eccentricity and 1 < a < 2 AU, our new planets have orbits similar to terrestrial planets in the solar system. The radial velocity residuals of both stars have significant trends, likely arising from substellar or low-mass stellar companions.Comment: 32 pages, including 11 figures and 5 tables. Accepted by Ap

    Optical to near-infrared transmission spectrum of the warm sub-Saturn HAT-P-12b

    Get PDF
    We present the transmission spectrum of HAT-P-12b through a joint analysis of data obtained from the Hubble Space Telescope Space Telescope Imaging Spectrograph (STIS) and Wide Field Camera 3 (WFC3) and Spitzer, covering the wavelength range 0.3-5.0 μ\mum. We detect a muted water vapor absorption feature at 1.4 μ\mum attenuated by clouds, as well as a Rayleigh scattering slope in the optical indicative of small particles. We interpret the transmission spectrum using both the state-of-the-art atmospheric retrieval code SCARLET and the aerosol microphysics model CARMA. These models indicate that the atmosphere of HAT-P-12b is consistent with a broad range of metallicities between several tens to a few hundred times solar, a roughly solar C/O ratio, and moderately efficient vertical mixing. Cloud models that include condensate clouds do not readily generate the sub-micron particles necessary to reproduce the observed Rayleigh scattering slope, while models that incorporate photochemical hazes composed of soot or tholins are able to match the full transmission spectrum. From a complementary analysis of secondary eclipses by Spitzer, we obtain measured depths of 0.042%±0.013%0.042\%\pm0.013\% and 0.045%±0.018%0.045\%\pm0.018\% at 3.6 and 4.5 μ\mum, respectively, which are consistent with a blackbody temperature of 89070+60890^{+60}_{-70} K and indicate efficient day-night heat recirculation. HAT-P-12b joins the growing number of well-characterized warm planets that underscore the importance of clouds and hazes in our understanding of exoplanet atmospheres.Comment: 25 pages, 19 figures, accepted for publication in AJ, updated with proof correction

    An Ethnohistorical Perspective on Cheyenne Demography

    Get PDF
    Administrative censuses of the Southern Cheyenne Indians from 1880,1891, and 1900 permit family reconstitution, identification of residence groups, and comparisons of fertility between monogamous and polygynous women, when the records are approached by ethnohistori cal methods. This approach includes an awareness of the aboriginal adoption practices, kinship system, and naming practices. It is argued that the biases and distortions of administrative records can be effectively corrected to add to our store of information on band and tribal societies.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    The shortest cut in brane cosmology

    Get PDF
    We consider brane cosmology studying the shortest null path on the brane for photons, and in the bulk for gravitons. We derive the differential equation for the shortest path in the bulk for a 1+4 cosmological metric. The time cost and the redshifts for photons and gravitons after traveling their respective path are compared. We consider some numerical solutions of the shortest path equation, and show that there is no shortest path in the bulk for the Randall-Sundrum vacuum brane solution, the linear cosmological solution of Bin\'etruy, et al for ω=1,2/3\omega = -1, -{2/3}, and for some expanding brane universes.Comment: 20 pages, 7 figure

    Duality Cascade in Brane Inflation

    Full text link
    We show that brane inflation is very sensitive to tiny sharp features in extra dimensions, including those in the potential and in the warp factor. This can show up as observational signatures in the power spectrum and/or non-Gaussianities of the cosmic microwave background radiation (CMBR). One general example of such sharp features is a succession of small steps in a warped throat, caused by Seiberg duality cascade using gauge/gravity duality. We study the cosmological observational consequences of these steps in brane inflation. Since the steps come in a series, the prediction of other steps and their properties can be tested by future data and analysis. It is also possible that the steps are too close to be resolved in the power spectrum, in which case they may show up only in the non-Gaussianity of the CMB temperature fluctuations and/or EE polarization. We study two cases. In the slow-roll scenario where steps appear in the inflaton potential, the sensitivity of brane inflation to the height and width of the steps is increased by several orders of magnitude comparing to that in previously studied large field models. In the IR DBI scenario where steps appear in the warp factor, we find that the glitches in the power spectrum caused by these sharp features are generally small or even unobservable, but associated distinctive non-Gaussianity can be large. Together with its large negative running of the power spectrum index, this scenario clearly illustrates how rich and different a brane inflationary scenario can be when compared to generic slow-roll inflation. Such distinctive stringy features may provide a powerful probe of superstring theory.Comment: Corrections in Eq.(5.47), Eq (5.48), Eq(5.49) and Fig

    EXPRES I. HD~3651 an Ideal RV Benchmark

    Get PDF
    The next generation of exoplanet-hunting spectrographs should deliver up to an order of magnitude improvement in radial velocity precision over the standard 1 m/s state of the art. This advance is critical for enabling the detection of Earth-mass planets around Sun-like stars. New calibration techniques such as laser frequency combs and stabilized etalons ensure that the instrumental stability is well characterized. However, additional sources of error include stellar noise, undetected short-period planets, and telluric contamination. To understand and ultimately mitigate error sources, the contributing terms in the error budget must be isolated to the greatest extent possible. Here, we introduce a new high cadence radial velocity program, the EXPRES 100 Earths program, which aims to identify rocky planets around bright, nearby G and K dwarfs. We also present a benchmark case: the 62-d orbit of a Saturn-mass planet orbiting the chromospherically quiet star, HD 3651. The combination of high eccentricity (0.6) and a moderately long orbital period, ensures significant dynamical clearing of any inner planets. Our Keplerian model for this planetary orbit has a residual RMS of 58 cm/s over a 6\sim 6 month time baseline. By eliminating significant contributors to the radial velocity error budget, HD 3651 serves as a standard for evaluating the long term precision of extreme precision radial velocity (EPRV) programs.Comment: 11 pages, 6 figures, accepted for publication in Astronomical Journa

    No More Active Galactic Nuclei in Clumpy Disks Than in Smooth Galaxies at z~2 in CANDELS / 3D-HST

    Get PDF
    We use CANDELS imaging, 3D-HST spectroscopy, and Chandra X-ray data to investigate if active galactic nuclei (AGNs) are preferentially fueled by violent disk instabilities funneling gas into galaxy centers at 1.3<z<2.4. We select galaxies undergoing gravitational instabilities using the number of clumps and degree of patchiness as proxies. The CANDELS visual classification system is used to identify 44 clumpy disk galaxies, along with mass-matched comparison samples of smooth and intermediate morphology galaxies. We note that, despite being being mass-matched and having similar star formation rates, the smoother galaxies tend to be smaller disks with more prominent bulges compared to the clumpy galaxies. The lack of smooth extended disks is probably a general feature of the z~2 galaxy population, and means we cannot directly compare with the clumpy and smooth extended disks observed at lower redshift. We find that z~2 clumpy galaxies have slightly enhanced AGN fractions selected by integrated line ratios (in the mass-excitation method), but the spatially resolved line ratios indicate this is likely due to extended phenomena rather than nuclear AGNs. Meanwhile the X-ray data show that clumpy, smooth, and intermediate galaxies have nearly indistinguishable AGN fractions derived from both individual detections and stacked non-detections. The data demonstrate that AGN fueling modes at z~1.85 - whether violent disk instabilities or secular processes - are as efficient in smooth galaxies as they are in clumpy galaxies.Comment: ApJ accepted. 17 pages, 17 figure

    EXPRES. II. Searching for Planets Around Active Stars: A Case Study of HD 101501

    Full text link
    By controlling instrumental errors to below 10 cm/s, the EXtreme PREcision Spectrograph (EXPRES) allows for a more insightful study of photospheric velocities that can mask weak Keplerian signals. Gaussian Processes (GP) have become a standard tool for modeling correlated noise in radial velocity datasets. While GPs are constrained and motivated by physical properties of the star, in some cases they are still flexible enough to absorb unresolved Keplerian signals. We apply GP regression to EXPRES radial velocity measurements of the 3.5 Gyr old chromospherically active Sun-like star, HD 101501. We obtain tight constraints on the stellar rotation period and the evolution of spot distributions using 28 seasons of ground-based photometry, as well as recent TESSTESS data. Light curve inversion was carried out on both photometry datasets to reveal the spot distribution and spot evolution timescales on the star. We find that the >5> 5 m/s rms radial velocity variations in HD 101501 are well-modeled with a GP stellar activity model without planets, yielding a residual rms scatter of 45 cm/s. We carry out simulations, injecting and recovering signals with the GP framework, to demonstrate that high-cadence observations are required to use GPs most efficiently to detect low-mass planets around active stars like HD 101501. Sparse sampling prevents GPs from learning the correlated noise structure and can allow it to absorb prospective Keplerian signals. We quantify the moderate to high-cadence monitoring that provides the necessary information to disentangle photospheric features using GPs and to detect planets around active stars.Comment: 25 pages, 16 figures, accepted to A
    corecore