15 research outputs found

    Reversible ADP-ribosylation of the 78 kDa glucose-regulated protein

    Get PDF
    AbstractStarvation of Mouse hepatoma cells for essential amino acids or glucose results in the mono-ADP-ribosylation of the 78 kDa glucose-regulated protein, GRP78. Here we show that the ADP-ribosylated and non-ADP-ribosylated forms of GRP78 are interconvertible during tryptophan starvation and refeeding. In addition, the ADP-ribosylation of GRP78 was shown to be reversible even during nutritional stress. The overexpressed pool of non-ADP-ribosylated GRP78 synthesized during tunicamycin treatment was available for ADP-ribosylation during subsequent amino acid starvation, especially in the absence of tunicamycin. The reversible ADP-ribosylation of GRP78 could be part of a metabolic control mechanism in operation during nutritional stress

    Indexing TNF-α gene expression using a gene-targeted reporter cell line

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Current cell-based drug screening technologies utilize randomly integrated reporter genes to index transcriptional activity of an endogenous gene of interest. In this context, reporter expression is controlled by known genetic elements that may only partially capture gene regulation and by unknown features of chromatin specific to the integration site. As an alternative technology, we applied highly efficient gene-targeting with recombinant adeno-associated virus to precisely integrate a luciferase reporter gene into exon 1 of the HeLa cell tumor necrosis factor-alpha (<it>TNF-α</it>) gene. Drugs known to induce <it>TNF-α </it>expression were then used to compare the authenticity of gene-targeted and randomly integrated transcriptional reporters.</p> <p>Results</p> <p><it>TNF-α</it>-targeted reporter activity reflected endogenous <it>TNF-α </it>mRNA expression, whereas randomly integrated <it>TNF-α </it>reporter lines gave variable expression in response to transcriptional and epigenetic regulators. 5,6-Dimethylxanthenone-4-acetic acid (DMXAA), currently used in cancer clinical trials to induce <it>TNF-α </it>gene transcription, was only effective at inducing reporter expression from <it>TNF-α </it>gene-targeted cells.</p> <p>Conclusion</p> <p>We conclude that gene-targeted reporter cell lines provide predictive indexing of gene transcription for drug discovery.</p

    Efficient Term Development of Vitrified Ferret Embryos Using a Novel Pipette Chamber Technique1

    Get PDF
    Development of an efficient cryopreservation technique for the domestic ferret is key for the long-term maintenance of valuable genetic specimens of this species and for the conservation of related endangered species. Unfortunately, current cryopreservation procedures, such as slow-rate freezing and vitrification with open pulled straws, are inefficient. In this report, we describe a pipette tip-based vitrification method that significantly improves the development of thawed ferret embryos following embryo transfer (ET). Ferret embryos at the morula (MR), compact morula (CM), and early blastocyst (EB) stages were vitrified using an Eppendorf microloader pipette tip as the chamber vessel. The rate of in vitro development was significantly (P < 0.05) higher among embryos vitrified at the CM (93.6%) and EB (100%) stages relative to those vitrified at the MR stages (58.7%). No significant developmental differences were observed when comparing CM and EB vitrified embryos with nonvitrified control CM (100%) and EB (100%) embryos. In addition, few differences in the ultrastructure of intracellular lipid droplets or in microfilament structure were observed between control embryos and embryos vitrified at any developmental stage. Vitrified-thawed CM/EB embryos cultured for 2 or 16 h before ET resulted in live birth rates of 71.3% and 77.4%, respectively. These rates were not significantly different from the control live birth rate (79.2%). However, culture for 32 h (25%) or 48 h (7.8%) after vitrification significantly reduced the rate of live births. These data indicate that the pipette chamber vitrification technique significantly improves the live birth rate of transferred ferret embryos relative to current state-of-the-art methods.
    corecore