67 research outputs found

    Pretreatment dietary intake is associated with tumor suppressor DNA methylation in head and neck squamous cell carcinomas

    Get PDF
    Diet is associated with cancer prognosis, including head and neck cancer (HNC), and has been hypothesized to influence epigenetic state by determining the availability of functional groups involved in the modification of DNA and histone proteins. The goal of this study was to describe the association between pretreatment diet and HNC tumor DNA methylation. Information on usual pretreatment food and nutrient intake was estimated via food frequency questionnaire (FFQ) on 49 HNC cases. Tumor DNA methylation patterns were assessed using the Illumina Goldengate Methylation Cancer Panel. First, a methylation score, the sum of individual hypermethylated tumor suppressor associated CpG sites, was calculated and associated with dietary intake of micronutrients involved in one-carbon metabolism and antioxidant activity, and food groups abundant in these nutrients. Second, gene specific analyses using linear modeling with empirical Bayesian variance estimation were conducted to identify if methylation at individual CpG sites was associated with diet. All models were controlled for age, sex, smoking, alcohol and HPV status. Individuals reporting in the highest quartile of folate, vitamin B12 and vitamin A intake, compared with those in the lowest quartile, showed significantly less tumor suppressor gene methylation, as did patients reporting the highest cruciferous vegetable intake. Gene specific analyses identified differential associations between DNA methylation and vitamin B12 and vitamin A intake when stratifying by HPV status. These preliminary results suggest that intake of folate, vitamin A and vitamin B12 may be associated with the tumor DNA methylation profile in HNC and enhance tumor suppression

    Gut Microbial Metabolite TMAO Enhances Platelet Hyperreactivity and Thrombosis Risk

    Get PDF
    Normal platelet function is critical to blood hemostasis and maintenance of a closed circulatory system. Heightened platelet reactivity, however, is associated with cardiometabolic diseases and enhanced potential for thrombotic events. We now show gut microbes, through generation of trimethylamine N-oxide (TMAO), directly contribute to platelet hyperreactivity and enhanced thrombosis potential. Plasma TMAO levels in subjects (n \u3e 4,000) independently predicted incident (3 years) thrombosis (heart attack, stroke) risk. Direct exposure of platelets to TMAO enhanced sub-maximal stimulus-dependent platelet activation from multiple agonists through augmented Ca2+ release from intracellular stores. Animal model studies employing dietary choline or TMAO, germ-free mice, and microbial transplantation collectively confirm a role for gut microbiota and TMAO in modulating platelet hyperresponsiveness and thrombosis potential and identify microbial taxa associated with plasma TMAO and thrombosis potential. Collectively, the present results reveal a previously unrecognized mechanistic link between specific dietary nutrients, gut microbes, platelet function, and thrombosis risk

    Innate PI3K p110  Regulates Th1/Th17 Development and Microbiota-Dependent Colitis

    Get PDF
    The p110δ subunit of class IA PI3K modulates signaling in innate immune cells. We previously demonstrated that mice harboring a kinase-dead p110δ subunit (p110δ(KD)) develop spontaneous colitis. Macrophages contributed to the Th1/Th17 cytokine bias in p110δ(KD) mice through increased IL-12 and IL-23 expression. In this study, we show that the enteric microbiota is required for colitis development in germfree p110δ(KD) mice. Colonic tissue and macrophages from p110δ(KD) mice produce significantly less IL-10 compared with wild-type mice. p110δ(KD) APCs cocultured with naive CD4+ Ag-specific T cells also produce significantly less IL-10 and induce more IFN-γ- and IL-17A-producing CD4+ T cells compared with wild-type APCs. Illustrating the importance of APC-T cell interactions in colitis pathogenesis in vivo, Rag1(-/-)/p110δ(KD) mice develop mild colonic inflammation and produced more colonic IL-12p40 compared with Rag1(-/-) mice. However, CD4+ CD45RB(high/low) T cell Rag1(-/-)/p110δ(KD) recipient mice develop severe colitis with increased percentages of IFN-γ- and IL-17A-producing lamina propria CD3+D4+ T cells compared with Rag1(-/-) recipient mice. Intestinal tissue samples from patients with Crohn's disease reveal significantly lower expression of PIK3CD compared with intestinal samples from non-inflammatory bowel disease control subjects (p < 0.05). PIK3CD expression inversely correlates with the ratio of IL12B:IL10 expression. In conclusion, the PI3K subunit p110δ controls homeostatic APC-T cell interactions by altering the balance between IL-10 and IL-12/23. Defects in p110δ expression and/or function may underlie the pathogenesis of human inflammatory bowel disease and lead to new therapeutic strategies

    MicroRNAs Classify Different Disease Behavior Phenotypes of Crohnʼs Disease and May Have Prognostic Utility:

    Get PDF
    Article first published online 6 July 2015.Supplemental Digital Content is Available in the Text.Background:There is a dire need for reliable prognostic markers that can guide effective therapeutic intervention in Crohn's disease (CD). We examined whether different phenotypes in CD can be classified based on colonic microRNA (miRNA) expression and whether miRNAs have prognostic utility for CD.Methods:High-throughput sequencing of small and total RNA isolated from colon tissue from patients with CD and controls without Inflammatory Bowel Disease (non-IBD) was performed. To identify miRNAs associated with specific phenotypes of CD, patients were stratified according to disease behavior (nonstricturing, nonpenetrating; stricturing; penetrating), and miRNA profiles in each subset were compared with those of the non-IBD group. Validation assays were performed using quantitative reverse transcription polymerase chain reaction. These miRNAs were further evaluated by quantitative reverse transcriptase polymerase chain reaction on formalin-fixed, paraffin-embedded tissue (index biopsies) of patients with nonpenetrating CD at the time of diagnosis that either retained the nonpenetrating phenotype or progressed to penetrating/fistulizing CD.Results:We found a suite of miRNAs, including miR-31-5p, miR-215, miR-223-3p, miR-196b-5p, and miR-203 that stratify patients with CD according to disease behavior independent of the effect of inflammation. Furthermore, we also demonstrated that expression levels of miR-215 in index biopsies of patients with CD might predict the likelihood of progression to penetrating/fistulizing CD. Finally, using a novel statistical simulation approach applied to colonic RNA-sequencing data for patients with CD and non-IBD controls, we identified miR-31-5p and miR-203 as candidate master regulators of gene expression profiles associated with CD.Conclusions:miRNAs may serve as clinically useful prognostic markers guiding initial therapy and identifying patients who would benefit most from effective intervention

    A Septal-Hypothalamic Pathway Drives Orexin Neurons, Which Is Necessary for Conditioned Cocaine Preference

    No full text
    Orexins (also called hypocretins) have been shown to be importantly involved in reward and addiction, but little is known about the circuitry that regulates orexin neuronal activity during drug-seeking behaviors. Here, we examined inputs to the lateral hypothalamic (LH) orexin cell field from the lateral septum (LS) using tract-tracing and Fos immunohistochemistry after cocaine (10mg/kg) conditioned place preference (CPP) in Sprague Dawley rats. We found that neurons in rostral LS (LSr) that project to LH are Fos-activated in proportion to cocaine CPP, and that inhibition of LSr neurons with local baclofen and muscimol microinjection (0.3/0.03 nmol) blocks expression of Fos in LH orexin cells and cocaine preference. In addition, using local inactivation in LS and orexin antisense Morpholinos in LH, we found that LSr influences on LH orexin neurons are critical for the expression of cocaine preference. These results indicate that LSr activates LH orexin neurons during cocaine place preference, and that this circuit is essential for expression of cocaine place preference

    The Emerging Role of Non-Coding RNAs in Drug Addiction

    No full text
    Prolonged drug use causes long-lasting neuroadaptations in reward-related brain areas that contribute to addiction. Despite significant amount of research dedicated to understanding the underlying mechanisms of addiction, the molecular underpinnings remain unclear. At the same time, much of the pervasive transcription that encompasses the human genome occurs in the nervous system and contributes to its heterogeneity and complexity. Recent evidence suggests that non-coding RNAs (ncRNAs) play an important and dynamic role in transcriptional regulation, epigenetic signaling, stress response, and plasticity in the nervous system. Dysregulation of ncRNAs are thought to contribute to many, and perhaps all, neurological disorders, including addiction. Here, we review recent insights in the functional relevance of ncRNAs, including both microRNAs (miRNAs), and long non-coding RNAs, and then illustrate specific examples of ncRNA regulation in the context of drug addiction. We conclude that ncRNAs are importantly involved in the persistent neuroadaptations associated with addiction-related behaviors, and that therapies that target specific ncRNAs may represent new avenues for the treatment of drug addiction
    corecore