14,095 research outputs found

    High-precision simulation of the height distribution for the KPZ equation

    Full text link
    The one-point distribution of the height for the continuum Kardar-Parisi-Zhang (KPZ) equation is determined numerically using the mapping to the directed polymer in a random potential at high temperature. Using an importance sampling approach, the distribution is obtained over a large range of values, down to a probability density as small as 10^{-1000} in the tails. Both short and long times are investigated and compared with recent analytical predictions for the large-deviation forms of the probability of rare fluctuations. At short times the agreement with the analytical expression is spectacular. We observe that the far left and right tails, with exponents 5/2 and 3/2 respectively, are preserved until large time. We present some evidence for the predicted non-trivial crossover in the left tail from the 5/2 tail exponent to the cubic tail of Tracy-Widom, although the details of the full scaling form remains beyond reach.Comment: 6 pages, 5 figure

    Curvature Corrections to Dynamics of Domain Walls

    Full text link
    The most usual procedure for deriving curvature corrections to effective actions for topological defects is subjected to a critical reappraisal. A logically unjustified step (leading to overdetermination) is identified and rectified, taking the standard domain wall case as an illustrative example. Using the appropriately corrected procedure, we obtain a new exact (analytic) expression for the corresponding effective action contribution of quadratic order in the wall width, in terms of the intrinsic Ricci scalar RR and the extrinsic curvature scalar KK. The result is proportional to cK2−RcK^2-R with the coefficient given by c≃2c\simeq 2. The resulting form of the ensuing dynamical equations is obtained in terms of the second fundamental form and the Dalembertian of its trace, K. It is argued that this does not invalidate the physical conclusions obtained from the "zero rigidity" ansatz c=0c=0 used in previous work.Comment: 19 pages plain TeX, 2 figures include

    Scattering of electromagnetic waves in metamaterial superlattices

    Get PDF
    The authors study experimentally both transmission and reflection of microwave radiation from metamaterialsuperlattices created by layers of periodically arranged wires and split-ring resonators. The authors measure the dependence of the metamaterial resonance on the spatial period of the superlattice and demonstrate resonance broadening and splitting for the binary metamaterial structures.The authors acknowledge support from the Australian Research Council and thank Ekmel Ozbay for providing additional details of the experimental results published earlier by his group

    The 'Spectraplakins': cytoskeletal giants with characteristics of both spectrin and plakin families

    Get PDF
    Recent studies have characterised a family of giant cytoskeletal crosslinkers encoded by the short stop gene in Drosophila and the dystonin/BPAG1 and MACF1 genes in mammals. We refer to the products of these genes as spectraplakins to highlight the fact that they share features with both the spectrin and plakin superfamilies. These genes produce a variety of large proteins, up to almost 9000 residues long, which can potentially extend 0.4 µm across a cell. Spectraplakins can interact with all three elements of the cytoskeleton: actin, microtubules and intermediate filaments. The analysis of mutant phenotypes in BPAG1 in mouse and short stop in Drosophila demonstrates that spectraplakins have diverse roles. These include linking the plasma membrane and the cytoskeleton, linking together different elements of the cytoskeleton and organising membrane domains.Katja Röper, Stephen L. Gregory and Nicholas H. Brow

    Inflating magnetically charged braneworlds

    Full text link
    Numerical solutions of Einstein, scalar, and gauge field equations are found for static and inflating defects in a higher-dimensional spacetime. The defects have (3+1)(3+1)-dimensional core and magnetic monopole configuration in n=3n=3 extra dimensions. For symmetry-breaking scale η\eta below the critical value ηc\eta_c, the defects are characterized by a flat worldsheet geometry and asymptotically flat extra dimensions. The critical scale ηc\eta_c is comparable to the higher-dimensional Planck scale and has some dependence on the gauge and scalar couplings. For η=ηc\eta=\eta_c, the extra dimensions degenerate into a `cigar', and for η>ηc\eta>\eta_c all static solutions are singular. The singularity can be removed if the requirement of staticity is relaxed and defect cores are allowed to inflate. The inflating solutions have de Sitter worldsheets and cigar geometry in the extra dimensions. Exact analytic solutions describing the asymptotic behavior of these inflating monopoles are found and the parameter space of these solutions is analyzed.Comment: 35 pages, revtex, 18 eps figure

    Zerobrane Matrix Mechanics, Monopoles and Membrane Approach in QCD

    Full text link
    We conjecture that a T-dual form of pure QCD describes dynamics of point-like monopoles. T-duality transforms the QCD Lagrangian into a matrix quantum mechanics of zerobranes which we identify with monopoles. At generic points of the monopole moduli space the SU(N) gauge group is broken down to U(1)N−1U(1)^{N-1} reproducing the key feature of 't Hooft's Abelian projection. There are certain points in the moduli space where monopole positions coincide, gauge symmetry is enhanced and gluons emerge as massless excitations. We show that there is a linearly rising potential between zerobranes. This indicates the presence of a stretched flux tube between monopoles. The lowest energy state is achieved when monopoles are sitting on top of each other and gauge symmetry is enhanced. In this case they behave as free massive particles and can condense. In fact, we find a constant eigenfunction of the corresponding Hamiltonian which describes condensation of monopoles. Using the monopole quantum mechanics, we argue that large NN QCD in this T-dual picture is a theory of a closed bosonic membrane propagating in {\em five} dimensional space-time. QCD point-like monopoles can be regarded in this approach as constituents of the membrane.Comment: 16 pages, new section and references adde

    Attoyac Bayou GIS Inventory, Source Survey and Land Use Cover Report

    Get PDF
    The Attoyac Bayou watershed is one of many rural watersheds included in the Texas Water Quality Inventory and 303(d) List as an impaired water body due to excessive E. coli levels. In many cases the assessed data in these waterbodies is limited and information regarding potential sources of pollution or other factors that may influence the presence of pollutant sources is not readily available. To address this need, a comprehensive geographic information system (GIS) inventory of the watershed will be developed and will integrate numerous existing information resources into a single location. Generally, the GIS will illustrate waterbodies, roadways, permitted point-source dischargers, and other points of concern. Additionally, current land use/land cover (LULC) maps for the watershed will be updated. Existing LULC layers will be utilized as a starting point and will be re-delineated utilizing groundtruthed data points collected for the GIS inventory to verify the accuracy of the LULC map. Through the development of the GIS and update of the LULC maps, a physical source survey will also be conducted across the watershed to document the primary sources of bacteria in the watershed

    Weyl Card Diagrams and New S-brane Solutions of Gravity

    Full text link
    We construct a new card diagram which accurately draws Weyl spacetimes and represents their global spacetime structure, singularities, horizons and null infinity. As examples we systematically discuss properties of a variety of solutions including black holes as well as recent and new time-dependent gravity solutions which fall under the S-brane class. The new time-dependent Weyl solutions include S-dihole universes, infinite arrays and complexified multi-rod solutions. Among the interesting features of these new solutions is that they have near horizon scaling limits and describe the decay of unstable objects.Comment: 78 pages, 32 figures. v2 added referenc
    • …
    corecore