4,659 research outputs found

    Scalar Meson Spectroscopy with Lattice Staggered Fermions

    Full text link
    With sufficiently light up and down quarks the isovector (a0a_0) and isosinglet (f0f_0) scalar meson propagators are dominated at large distance by two-meson states. In the staggered fermion formulation of lattice quantum chromodynamics, taste-symmetry breaking causes a proliferation of two-meson states that further complicates the analysis of these channels. Many of them are unphysical artifacts of the lattice approximation. They are expected to disappear in the continuum limit. The staggered-fermion fourth-root procedure has its purported counterpart in rooted staggered chiral perturbation theory (rSXPT). Fortunately, the rooted theory provides a strict framework that permits the analysis of scalar meson correlators in terms of only a small number of low energy couplings. Thus the analysis of the point-to-point scalar meson correlators in this context gives a useful consistency check of the fourth-root procedure and its proposed chiral realization. Through numerical simulation we have measured correlators for both the a0a_0 and f0f_0 channels in the ``Asqtad'' improved staggered fermion formulation in a lattice ensemble with lattice spacing a=0.12a = 0.12 fm. We analyze those correlators in the context of rSXPT and obtain values of the low energy chiral couplings that are reasonably consistent with previous determinations.Comment: 23 pp., 3 figs., submitted to Phys. Rev.

    Anomalous scaling of passive scalar in turbulence and in equilibrium

    Full text link
    We analyze multi-point correlation functions of a tracer in an incompressible flow at scales far exceeding the scale LL at which fluctuations are generated (quasi-equilibrium domain) and compare them with the correlation functions at scales smaller than LL (turbulence domain). We demonstrate that the scale invariance can be broken in the equilibrium domain and trace this breakdown to the statistical integrals of motion (zero modes) as has been done before for turbulence. Employing Kraichnan model of short-correlated velocity we identify the new type of zero modes, which break scale invariance and determine an anomalously slow decay of correlations at large scales

    Light hadron properties with improved staggered quarks

    Get PDF
    Preliminary results from simulations with 2+1 dynamical quark flavors at a lattice spacing of 0.09 fm are combined with earlier results at a=0.13 fm. We examine the approach to the continuum limit and investigate the dependence of the pseudoscalar masses and decay constants as the sea and valence quark masses are separately varied.Comment: Lattice2002(spectrum

    Approximate Killing Vectors on S^2

    Full text link
    We present a new method for computing the best approximation to a Killing vector on closed 2-surfaces that are topologically S^2. When solutions of Killing's equation do not exist, this method is shown to yield results superior to those produced by existing methods. In addition, this method appears to provide a new tool for studying the horizon geometry of distorted black holes.Comment: 4 pages, 3 figures, submitted to Physical Review D, revtex

    Heavy-light decay constants using clover valence quarks and three flavors of dynamical improved staggered quarks

    Full text link
    Starting in 2001, the MILC Collaboration began a large scale calculation of heavy-light meson decay constants using clover valence quarks on ensembles of three flavor configurations. For the coarse configurations, with a=0.12 fm, eight combinations of dynamical light and strange quarks have been analyzed. For the fine configurations, with a=0.09 fm, three combinations of quark masses are studied. Since we last reported on this calculation, statistics have been increased on the fine ensembles, and, more importantly, a preliminary value for the perturbative renormalization of the axial-vector current has become available. Thus, results for f_B, f_{B_s}, f_D and f_{D_s} can, in principle, be calculated in MeV, in addition to decay-constant ratios that were calculated previously.Comment: Talk presented at Lattice2004(heavy), Fermilab, June 21-26, 2004; 3 pages, 3 color figure

    The beginnings of geography teaching and research in the University of Glasgow: the impact of J.W. Gregory

    Get PDF
    J.W. Gregory arrived in Glasgow from Melbourne in 1904 to take up the post of foundation Professor of Geology in the University of Glasgow. Soon after his arrival in Glasgow he began to push for the setting up of teaching in Geography in Glasgow, which came to pass in 1909 with the appointment of a Lecturer in Geography. This lecturer was based in the Department of Geology in the University's East Quad. Gregory's active promotion of Geography in the University was matched by his extensive writing in the area, in textbooks, journal articles and popular books. His prodigious output across a wide range of subject areas is variably accepted today, with much of his geomorphological work being judged as misguided to varying degrees. His 'social science' publications - in the areas of race, migration, colonisation and economic development of Africa and Australia - espouse a viewpoint that is unacceptable in the twenty-first century. Nonetheless, that viewpoint sits squarely within the social and economic traditions of Gregory's era, and he was clearly a key 'Establishment' figure in natural and social sciences research in the first half of the twentieth century. The establishment of Geography in the University of Glasgow remains enduring testimony of J.W. Gregory's energy, dedication and foresight

    High temperature QCD with three flavors of improved staggered quarks

    Get PDF
    We present an update of our study of high temperature QCD with three flavors of quarks, using a Symanzik improved gauge action and the Asqtad staggered quark action. Simulations are being carried out on lattices with Nt=4, 6 and 8 for the case of three degenerate quarks with masses less than or equal to the strange quark mass, msm_s, and on lattices with Nt=6 and 8 for degenerate up and down quarks with masses in the range 0.2 m_s \leq m_{u,d} \leq 0.6 m_s, and the strange quark fixed near its physical value. We also report on first computations of quark number susceptibilities with the Asqtad action. These susceptibilities are of interest because they can be related to event-by-event fluctuations in heavy ion collision experiments. Use of the improved quark action leads to a substantial reduction in lattice artifacts. This can be seen already for free fermions and carries over into our results for QCD.Comment: Lattice2002(Non-zero temperature and density

    Kissing Balloon Inflation in Percutaneous Coronary Interventions

    Get PDF
    Bifurcation lesions are the most frequently approached complex coronary lesions in everyday interventional practice. Bifurcations complexity relies essentially on their very specific anatomy that is imperfectly handled by current coronary devices and, despite dedicated techniques and drug-eluting stents, percutaneous coronary interventions directed toward the treatment of bifurcations are technically demanding and require proper execution. Kissing balloon (KB) inflation was the first specific bifurcation technique to have been developed for percutaneous bifurcation interventions and continues to currently play an important role. Indeed, KB has been proposed to optimize stent apposition, improve side branch access while correcting stent deformation or distortion. Over the years, the KB technique has been deeply investigated by many different methods, from bench testing and computer simulations to in vivo intravascular imaging and clinical studies, producing a large amount of data pointing out the benefits and limitations of the technique. We sought to provide here a comprehensive overview of all those aspects

    Heavy-light meson decay constants with N_f=3

    Get PDF
    During the past year the MILC Collaboration has continued its study of heavy-light meson decay constants with three dynamical quarks. Calculations have been extended to a second lattice spacing of about 0.09 fm. At this lattice spacing, there are results in the quenched approximation and for three sets of dynamical quark mass: m_l=m_s; m_l=0.4 m_s and m_l=0.2 m_s, where m_l is the light mass for the u and d quarks and m_s is the strange quark mass. At the coarser lattice spacing, for which results were presented at Lattice 2001, statistics have been increased for two sets of quark masses and three additional sets of quark masses have been studied, giving a total of eight combinations used to interpolate between the quenched and chiral limits. When these calculations are completed, we can study the decay constants taking into account both chiral and continuum extrapolations.Comment: Lattice2002(heavyquark), 3 pages, 3 color figures, to appear in the proceedings of Lattice 200
    • …
    corecore