3 research outputs found

    Discovery and Evaluation of Clinical Candidate IDH305, a Brain Penetrant Mutant IDH1 Inhibitor

    No full text
    Inhibition of mutant IDH1 is being evaluated clinically as a promising treatment option for various cancers with hotspot mutation at Arg<sup>132</sup>. Having identified an allosteric, induced pocket of IDH1<sup>R132H</sup>, we have explored 3-pyrimidin-4-yl-oxazolidin-2-ones as mutant IDH1 inhibitors for <i>in vivo</i> modulation of 2-HG production and potential brain penetration. We report here optimization efforts toward the identification of clinical candidate <b>IDH305</b> (<b>13</b>), a potent and selective mutant IDH1 inhibitor that has demonstrated brain exposure in rodents. Preclinical characterization of this compound exhibited <i>in vivo</i> correlation of 2-HG reduction and efficacy in a patient-derived IDH1 mutant xenograft tumor model. <b>IDH305</b> (<b>13</b>) has progressed into human clinical trials for the treatment of cancers with IDH1 mutation

    Optimization of 3‑Pyrimidin-4-yl-oxazolidin-2-ones as Allosteric and Mutant Specific Inhibitors of IDH1

    No full text
    High throughput screening and subsequent hit validation identified 4-isopropyl-3-(2-((1-phenylethyl)­amino)­pyrimidin-4-yl)­oxazolidin-2-one as a potent inhibitor of IDH1<sup>R132H</sup>. Synthesis of the four separate stereoisomers identified the (<i>S</i>,<i>S</i>)-diastereomer (<b>IDH125</b>, <b>1f</b>) as the most potent isomer. This also showed reasonable cellular activity and excellent selectivity vs IDH1<sup>wt</sup>. Initial structure–activity relationship exploration identified the key tolerances and potential for optimization. X-ray crystallography identified a functionally relevant allosteric binding site amenable to inhibitors, which can penetrate the blood–brain barrier, and aided rational optimization. Potency improvement and modulation of the physicochemical properties identified (<i>S</i>,<i>S</i>)-oxazolidinone <b>IDH889</b> (<b>5x</b>) with good exposure and 2-HG inhibitory activity in a mutant IDH1 xenograft mouse model

    Discovery of Orally Active Inhibitors of Brahma Homolog (BRM)/SMARCA2 ATPase Activity for the Treatment of Brahma Related Gene 1 (BRG1)/SMARCA4-Mutant Cancers

    No full text
    SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin subfamily A member 2 (SMARCA2), also known as Brahma homologue (BRM), is a Snf2-family DNA-dependent ATPase. BRM and its close homologue Brahma-related gene 1 (BRG1), also known as SMARCA4, are mutually exclusive ATPases of the large ATP-dependent SWI/SNF chromatin-remodeling complexes involved in transcriptional regulation of gene expression. No small molecules have been reported that modulate SWI/SNF chromatin-remodeling activity via inhibition of its ATPase activity, an important goal given the well-established dependence of BRG1-deficient cancers on BRM. Here, we describe allosteric dual BRM and BRG1 inhibitors that downregulate BRM-dependent gene expression and show antiproliferative activity in a BRG1-mutant-lung-tumor xenograft model upon oral administration. These compounds represent useful tools for understanding the functions of BRM in BRG1-loss-of-function settings and should enable probing the role of SWI/SNF functions more broadly in different cancer contexts and those of other diseases
    corecore