7 research outputs found
Inability of CMIP5 models to simulate recent strengthening of the walker circulation: implications for projections
This paper examines changes in the strength of the Walker circulation (WC) using the pressure difference between the western and eastern equatorial Pacific. Changes in observations and in 35 climate models from the Coupled Model Intercomparison Project (CMIP) phase 5 (CMIP5) are determined. On the one hand, 78% of the models show a weakening of the WC over the twentieth century, consistent with the observations and previous studies using CMIP phase 3 (CMIP3) models. However, the observations also exhibit a strengthening in the last three decades (i.e., from 1980 to 2012) that is statistically significant at the 95% level. The models, on the other hand, show no consensus on the sign of change, and none of the models shows a statistically significant strengthening over the same period. While the reasons for the inconsistency between models and observations is not fully understood, it is shown that the ability of the models to generate trends as large as the observed from internal variability is reduced because most models have weaker than observed levels of both multidecadal variability and persistence of interannual variability in WC strength. In the twenty-first-century future projections, the WC weakens in 25 out of 35 models, under representative concentration pathway (RCP) 8.5, 9 out of 11 models under RCP6.0, 16 out of 18 models under RCP4.5, and 12 out of 15 models under RCP2.6. The projected decrease is also consistent with results obtained previously using models from CMIP3. However, as the reasons for the inconsistency between modeled and observed trends in the last three decades are not fully understood, confidence in the model projections is reduced
What Caused the Observed Twentieth-Century Weakening of the Walker Circulation
The Walker circulation (WC) is one of the world's most prominent and important atmospheric systems. The WC weakened during the twentieth century, reaching record low levels in recent decades. This weakening is thought to be partly due to global warming and partly due to internally generated natural variability. There is, however, no consensus in the literature on the relative contribution of external forcing and natural variability to the observed weakening of the WC. This paper examines changes in the strength of theWCusing an index called BoxΔP, which is equal to the difference in mean sea level pressure across the equatorial Pacific. Change in both the observations and in World Climate Research Programme (WCRP) Coupled Model Intercomparison Project phase 3 (CMIP3) climate models are examined. The annual average BoxΔP declines in the observations and in 15 out of 23 models during the twentieth century (results that are significant at or above the 95% level), consistent with earlier work. However, the magnitude of the multimodel ensemble mean (MMEM) 1901-99 trend (-0.10 Pa yr -1) is much smaller than the magnitude of the observed trend (-0.52 Pa yr -1). While a wide range of trends is evident in the models with approximately 90% of the model trends in the range (-0.25 to +0.1 Pa yr -1), even this range is too narrow to encompass the magnitude of the observed trend. Twenty-first-century changes in BoxΔP under the Special Report on Emissions Scenarios (SRES) A1B and A2 are also examined. Negative trends (i.e., weaker WCs) are evident in all seasons. However, the MMEM trends for the A1B and A2 scenarios are smaller in magnitude than the magnitude of the observed trend. Given that external forcing linked to greenhouse gases is much larger in the twenty-firstcentury scenarios than twentieth-century forcing, this, together with the twentieth-century results mentioned above, would seem to suggest that external forcing has not been the primary driver of the observed weakening of the WC. However, 9 of the 23 models are unable to account for the observed change unless the internally generated component of the trend is very large. But indicators of observed variability linked to El Niño- Southern Oscillation (ENSO) and the Interdecadal Pacific Oscillation have modest trends, suggesting that internally variability has been modest. Furthermore, many of the nine 'inconsistent' models tend to have poorer simulations of climatic features linked to ENSO. In addition, the externally forced component of the trend tends to be larger in magnitude and more closely matches the observed trend in the models that are better able to reproduce ENSO-related variability. The 'best' four models, for example, have a MMEM of -0.2 Pa yr -1 (i.e., approximately 40% of the observed change), suggesting a greater role for external forcing in driving the observed trend. These and other considerations outlined below lead the authors to conclude that (i) both external forcing and internally generated variability contributed to the observed weakening of the WC over the twentieth century and (ii) external forcing accounts for approximately 30%-70% of the observed weakening with internally generated climate variability making up the rest. © 2011 American Meteorological Society
The impact of global warming on the Southern Oscillation Index
The Southern Oscillation Index (SOI)-a measure of air pressure difference across the Pacific Ocean, from Tahiti in the south-east to Darwin in the west-is one of the world's most important climatic indices. The SOI is used to track and predict changes in both the El Niño-Southern Oscillation phenomenon, and the Walker Circulation (WC). During El Niño, for example, the WC weakens and the SOI tends to be negative. Climatic variations linked to changes in the WC have a profound influence on climate, ecosystems, agriculture, and societies in many parts of the world. Previous research has shown that (1) the WC and the SOI weakened in recent decades and that (2) the WC in climate models tends to weaken in response to elevated atmospheric greenhouse gas concentrations. Here we examine changes in the SOI and air pressure across the Pacific in the observations and in numerous WCRP/CMIP3 climate model integrations for both the 20th and 21st centuries. The difference in mean-sea level air pressure (MSLP) between the eastern and western equatorial Pacific tends to weaken during the 21st century, consistent with previous research. Here we show that this primarily arises because of an increase in MSLP in the west Pacific and not a decline in the east. We also show, in stark contrast to expectations, that the SOI actually tends to increase during the 21st century, not decrease. Under global warming MSLP tends to increase at both Darwin and Tahiti, but tends to rise more at Tahiti than at Darwin. Tahiti lies in an extensive region where MSLP tends to rise in response to global warming. So while the SOI is an excellent indicator of interannual variability in both the equatorial MSLP gradient and the WC, it is a highly misleading indicator of long-term equatorial changes linked to global warming. Our results also indicate that the observed decline in the SOI in recent decades has been driven by natural, internally generated variability. The externally forced signal in the June-December SOI during 2010 is estimated to be approximately 5% of the standard deviation of variability in the SOI during the 20th century. This figure is projected to increase to 40% by the end of the 21st century under the A2 SRES scenario. The 2010 global warming signal is already a major contributor to interdecadal variability in the SOI, equal to 45% of the standard deviation of 30-year running averages of the SOI. This figure is projected to increase to nearly 340% by the end of the 21st century. Implications that these discoveries have for understanding recent climatic change and for seasonal prediction are discussed. © 2010 The Author(s)
Robust twenty-first-century projections of El Niño and related precipitation variability
The El Nino-Southern Oscillation (ENSO) drives substantial variability in rainfall, severe weather, agricultural production, ecosystems and disease in many parts of the world. Given that further human-forced changes in the Earth's climate system seem inevitable, the possibility exists that the character of ENSO and its impacts might change over the coming century. Although this issue has been investigated many times during the past 20 years, there is very little consensus on future changes in ENSO, apart from an expectation that ENSO will continue to be a dominant source of year-to-year variability. Here we show that there are in fact robust projected changes in the spatial patterns of year-to-year ENSO-driven variability in both surface temperature and precipitation. These changes are evident in the two most recent generations of climate models, using four different scenarios for CO2 and other radiatively active gases. By the mid-to late twenty-first century, the projections include an intensification of both El-Niño-driven drying in the western Pacific Ocean and rainfall increases in the central and eastern equatorial Pacific. Experiments with an Atmospheric General Circulation Model reveal that robust projected changes in precipitation anomalies during El Nino years are primarily determined by a nonlinear response to surface global warming. Uncertain projected changes in the amplitude of ENSO-driven surface temperature variability have only a secondary role. Projected changes in key characteristics of ENSO are consequently much clearer than previously realized
Apparent limitations in the ability of CMIP5 climate models to simulate recent multi-decadal change in surface temperature: implications for global temperature projections
Observed surface temperature trends over the period 1998–2012/2014 have attracted a great deal of interest because of an apparent slowdown in the rate of global warming, and contrasts between climate model simulations and observations of such trends. Many studies have addressed the statistical significance of these relatively short-trends, whether they indicate a possible bias in the model values and the implications for global warming generally. Here we re-examine these issues, but as they relate to changes over much longer-term changes. We find that on multi-decadal time scales there is little evidence for any change in the observed global warming rate, but some evidence for a recent temporary slowdown in the warming rate in the Pacific. This multi-decadal slowdown can be partly explained by a cool phase of the Interdecadal Pacific Oscillation and a short-term excess of La Niña events. We also analyse historical and projected changes in 38 CMIP climate models. All of the model simulations examined simulate multi-decadal warming in the Pacific over the past half-century that exceeds observed values. This difference cannot be fully explained by observed internal multi-decadal climate variability, even if allowance is made for an apparent tendency for models to underestimate internal multi-decadal variability in the Pacific. Models which simulate the greatest global warming over the past half-century also project warming that is among the highest of all models by the end of the twenty-first century, under both low and high greenhouse gas emission scenarios. Given that the same models are poorest in representing observed multi-decadal temperature change, confidence in the highest projections is reduced