93 research outputs found

    A simple method to identify kinases that regulate embryonic stem cell pluripotency by high-throughput inhibitor screening

    Get PDF
    Embryonic stem cells (ESCs) can self-renew or differentiate into all cell types, a phenomenon known as pluripotency. Distinct pluripotent states have been described, termed "naïve" and "primed" pluripotency. The mechanisms that control naïve-primed transition are poorly understood. In particular, we remain poorly informed about protein kinases that specify naïve and primed pluripotent states, despite increasing availability of high-quality tool compounds to probe kinase function. Here, we describe a scalable platform to perform targeted small molecule screens for kinase regulators of the naïve-primed pluripotent transition in mouse ESCs. This approach utilizes simple cell culture conditions and standard reagents, materials and equipment to uncover and validate kinase inhibitors with hitherto unappreciated effects on pluripotency. We discuss potential applications for this technology, including screening of other small molecule collections such as increasingly sophisticated kinase inhibitors and emerging libraries of epigenetic tool compounds

    LAR Receptor Tyrosine Phosphatase Family in Healthy and Diseased Brain

    Get PDF
    Protein phosphatases are major regulators of signal transduction and they are involved in key cellular mechanisms such as proliferation, differentiation, and cell survival. Here we focus on one class of protein phosphatases, the type IIA Receptor-type Protein Tyrosine Phosphatases (RPTPs), or LAR-RPTP subfamily. In the last decade, LAR-RPTPs have been demonstrated to have great importance in neurobiology, from neurodevelopment to brain disorders. In vertebrates, the LAR-RPTP subfamily is composed of three members: PTPRF (LAR), PTPRD (PTPδ) and PTPRS (PTPσ), and all participate in several brain functions. In this review we describe the structure and proteolytic processing of the LAR-RPTP subfamily, their alternative splicing and enzymatic regulation. Also, we review the role of the LAR-RPTP subfamily in neural function such as dendrite and axon growth and guidance, synapse formation and differentiation, their participation in synaptic activity, and in brain development, discussing controversial findings and commenting on the most recent studies in the field. Finally, we discuss the clinical outcomes of LAR-RPTP mutations, which are associated with several brain disorders

    RNF12 X-linked intellectual disability mutations disrupt E3 ligase activity and neural differentiation

    Get PDF
    Summary: X-linked intellectual disability (XLID) is a heterogeneous syndrome affecting mainly males. Human genetics has identified >100 XLID genes, although the molecular and developmental mechanisms underpinning this disorder remain unclear. Here, we employ an embryonic stem cell model to explore developmental functions of a recently identified XLID gene, the RNF12/RLIM E3 ubiquitin ligase. We show that RNF12 catalytic activity is required for proper stem cell maintenance and neural differentiation, and this is disrupted by patient-associated XLID mutation. We further demonstrate that RNF12 XLID mutations specifically impair ubiquitylation of developmentally relevant substrates. XLID mutants disrupt distinct RNF12 functional modules by either inactivating the catalytic RING domain or interfering with a distal regulatory region required for efficient ubiquitin transfer. Our data thereby uncover a key function for RNF12 E3 ubiquitin ligase activity in stem cell and neural development and identify mechanisms by which this is disrupted in intellectual disability. : Bustos et al. show that the RNF12 E3 ubiquitin ligase regulates stem cell maintenance and neuronal differentiation. They demonstrate that RNF12/RLIM mutations identified in X-linked intellectual disability patients disrupt regions required for catalytic activity, which leads to compromised stem cell maintenance and abnormal neural differentiation. Keywords: ubiquitin, protein ubiquitylation, E3 ubiquitin ligase, proteasomal degradation, RNF12/RLIM, intellectual disability, X-linked intellectual disability, embryonic stem cells, neural differentiatio
    corecore