6,893 research outputs found

    Dynamical Monte Carlo Study of Equilibrium Polymers : Static Properties

    Full text link
    We report results of extensive Dynamical Monte Carlo investigations on self-assembled Equilibrium Polymers (EP) without loops in good solvent. (This is thought to provide a good model of giant surfactant micelles.) Using a novel algorithm we are able to describe efficiently both static and dynamic properties of systems in which the mean chain length \Lav is effectively comparable to that of laboratory experiments (up to 5000 monomers, even at high polymer densities). We sample up to scission energies of E/kBT=15E/k_BT=15 over nearly three orders of magnitude in monomer density ϕ\phi, and present a detailed crossover study ranging from swollen EP chains in the dilute regime up to dense molten systems. Confirming recent theoretical predictions, the mean-chain length is found to scale as \Lav \propto \phi^\alpha \exp(\delta E) where the exponents approach αd=δd=1/(1+γ)0.46\alpha_d=\delta_d=1/(1+\gamma) \approx 0.46 and αs=1/2[1+(γ1)/(νd1)]0.6,δs=1/2\alpha_s = 1/2 [1+(\gamma-1)/(\nu d -1)] \approx 0.6, \delta_s=1/2 in the dilute and semidilute limits respectively. The chain length distribution is qualitatively well described in the dilute limit by the Schulz-Zimm distribution \cN(s)\approx s^{\gamma-1} \exp(-s) where the scaling variable is s=\gamma L/\Lav. The very large size of these simulations allows also an accurate determination of the self-avoiding walk susceptibility exponent γ1.165±0.01\gamma \approx 1.165 \pm 0.01. ....... Finite-size effects are discussed in detail.Comment: 15 pages, 14 figures, LATE

    Extreme mechanical resilience of self-assembled nanolabyrinthine materials

    Get PDF
    Low-density materials with tailorable properties have attracted attention for decades, yet stiff materials that can resiliently tolerate extreme forces and deformation while being manufactured at large scales have remained a rare find. Designs inspired by nature, such as hierarchical composites and atomic lattice-mimicking architectures, have achieved optimal combinations of mechanical properties but suffer from limited mechanical tunability, limited long-term stability, and low-throughput volumes that stem from limitations in additive manufacturing techniques. Based on natural self-assembly of polymeric emulsions via spinodal decomposition, here we demonstrate a concept for the scalable fabrication of nonperiodic, shell-based ceramic materials with ultralow densities, possessing features on the order of tens of nanometers and sample volumes on the order of cubic centimeters. Guided by simulations of separation processes, we numerically show that the curvature of self-assembled shells can produce close to optimal stiffness scaling with density, and we experimentally demonstrate that a carefully chosen combination of topology, geometry, and base material results in superior mechanical resilience in the architected product. Our approach provides a pathway to harnessing self-assembly methods in the design and scalable fabrication of beyond-periodic and nonbeam-based nano-architected materials with simultaneous directional tunability, high stiffness, and unsurpassed recoverability with marginal deterioration

    The details of decriminalization: Designing a non-criminal response to the possession of drugs for personal use

    Full text link
    Internationally, policymakers are considering alternative, non-criminal responses to the possession of drugs for personal use, or ‘simple possession’. We show that ‘decriminalization’ is not a simple, unified model; rather, there are meaningful differences in policies and options available as part of a non-criminal response. Responses include various decriminalization, diversion, and depenalization approaches. However, what details need to be considered in developing these approaches? In this paper, we eschew these labels and present an overview of key design features of non-criminal responses to simple possession and consider some of the equity considerations of the choices available, including reform architecture (the objectives and legal framework); eligibility criteria (population-, place-, and drug-based criteria); and actions taken (deterrence, therapeutic, and enforcement strategies). This paper does not evaluate individual features or models, but instead offers a practical framework that can be used to deliberate on potential reform decisions

    The Ultrasensitivity of Living Polymers

    Full text link
    Synthetic and biological living polymers are self-assembling chains whose chain length distributions (CLDs) are dynamic. We show these dynamics are ultrasensitive: even a small perturbation (e.g. temperature jump) non-linearly distorts the CLD, eliminating or massively augmenting short chains. The origin is fast relaxation of mass variables (mean chain length, monomer concentration) which perturbs CLD shape variables before these can relax via slow chain growth rate fluctuations. Viscosity relaxation predictions agree with experiments on the best-studied synthetic system, alpha-methylstyrene.Comment: 4 pages, submitted to Phys. Rev. Let

    Policy instruments in the Common Agricultural Policy

    Get PDF
    Policy changes in the Common Agricultural Policy (CAP) can be explained in terms of the exhaustion and long-term contradictions of policy instruments. Changes in policy instruments have reoriented the policy without any change in formal Treaty goals. The social and economic efficacy of instruments in terms of evidence-based policy analysis was a key factor in whether they were delegitimized. The original policy instruments were generally dysfunctional, but reframing the policy in terms of a multifunctionality paradigm permitted the development of more efficacious instruments. A dynamic interaction takes place between the instruments and policy informed by the predominant discourses

    Identification And Characterization Of A Second Encephalitogenic Determinant Of Myelin Proteolipid Protein (Residues 178-191) For SJL Mice

    Get PDF
    We previously described a synthetic peptide of myelin proteolipid protein (PLP), peptide 139-151, which induces experimental allergic encephalomyelitis in SJL/J (H-2s) mice. We have now identified an additional determinant, PLP residues 178-191, that is also a potent encephalitogen in this strain. When PLP peptide 178-191 was compared with peptide 139-151 on an equimolar basis, the day of onset of disease induced by PLP 178-191 was earlier, but the incidence, severity, and histologic features were indistinguishable. Lymph node cells from animals immunized with the whole PLP molecule responded to both PLP 178-191 and 139-151, suggesting immunologic codominance of the two epitopes. PLP 178-191 elicited stronger proliferative responses and this may relate to the earlier onset of disease induced with this peptide. Two CD4+, peptide-specific, I-A(s)-restricted T cell lines, selected by stimulation of lymph node cells with either PLP 178-191 or 139-151, were each encephalitogenic in naive syngeneic mice. The presence of multiple encephalitogenic codominant PLP epitopes within a single mouse strain emphasizes the complexity of the immune response to PLP and its potential as a target Ag in autoimmune demyelinating diseases

    Increased Immunoreactivity to Two Overlapping Peptides of Myelin Proteolipid Protein in Multiple Sclerosis

    Get PDF
    We tested the proliferative responses of peripheral blood mononuclear cells from 61 patients with multiple sclerosis, 56 healthy control subjects and 52 patients with other neurological diseases to seven synthetic peptides of myelin proteolipid protein (PLP) and 19 synthetic peptides of myelin basic protein (MBP). Increased proliferative responses to two overlapping PLP peptides, PLP184-199 and PLP190-209, were found significantly more frequently in blood from patients with relapsing-remitting or secondary progressive multiple sclerosis (52.3%), but not from those with primary progressive multiple sclerosis (18.2%), than in that from healthy control subjects (8.9%) and patients with other neurological diseases (20.8%). Reactivity to these PLP peptides was most frequently seen in blood from patients with multiple sclerosis of 6-15 years duration and with moderate to severe disability (Kurtzke's Expanded Disability Status Scale > 4.0); the blood from 15 of 19 patients in this group reacted to one or both of the peptides. Both peptides could be recognized by short-term T-cell lines specific for whole PLP, and lines specific for one or other of the two overlapping peptides were able to recognize whole PLP, indicating that these peptides can be processed naturally from the intact molecule. This region of PLP is encephalitogenic in a number of strains of mice. Samples from multiple sclerosis patients did not react more frequently to any of the MBP peptides than those from healthy control subjects. The proportions of patients with other neurological diseases whose blood responded to the MBP peptides that most frequently elicited responses in blood from multiple sclerosis patients were significantly lower than the proportions of multiple sclerosis patients and healthy control subjects whose blood responded to these peptides

    Gaussians versus back-to-back exponentials: a numerical study

    Get PDF
    The underlying magnetic field distribution in many samples studied by the mu R technique is asymmetric. Despite this, quite often fit functions assuming symmetric (Gaussian) distributions are used. Here, a back-to-back exponential function, which can be made asymmetric with fit parameters, is studied numerically alongside a Gaussian function to see how well each fits symmetric and asymmetric simulated data. Both fit symmetric data well, but the back-to-back exponential is found to be superior for fitting asymmetric data
    corecore