3,450 research outputs found

    Independent particle descriptions of tunneling from a many-body perspective

    Full text link
    Currents across thin insulators are commonly taken as single electrons moving across classically forbidden regions; this independent particle picture is well-known to describe most tunneling phenomena. Examining quantum transport from a different perspective, i.e., by explicit treatment of electron-electron interactions, we evaluate different single particle approximations with specific application to tunneling in metal-molecule-metal junctions. We find maximizing the overlap of a Slater determinant composed of single particle states to the many-body current-carrying state is more important than energy minimization for defining single particle approximations in a system with open boundary conditions. Thus the most suitable single particle effective potential is not one commonly in use by electronic structure methods, such as the Hartree-Fock or Kohn-Sham approximations.Comment: 4+ pages, 4 figures; accepted to Phys. Rev. B Rapid Communication

    Solution to the problem of the poor cyclic fatigue resistance of bulk metallic glasses

    Get PDF
    The recent development of metallic glass-matrix composites represents a particular milestone in engineering materials for structural applications owing to their remarkable combination of strength and toughness. However, metallic glasses are highly susceptible to cyclic fatigue damage, and previous attempts to solve this problem have been largely disappointing. Here, we propose and demonstrate a microstructural design strategy to overcome this limitation by matching the microstructural length scales (of the second phase) to mechanical crack-length scales. Specifically, semisolid processing is used to optimize the volume fraction, morphology, and size of second-phase dendrites to confine any initial deformation (shear banding) to the glassy regions separating dendrite arms having length scales of ≈2 μm, i.e., to less than the critical crack size for failure. Confinement of the damage to such interdendritic regions results in enhancement of fatigue lifetimes and increases the fatigue limit by an order of magnitude, making these “designed” composites as resistant to fatigue damage as high-strength steels and aluminum alloys. These design strategies can be universally applied to any other metallic glass systems

    Higher compressive strengths and the Bauschinger effect in conformally passivated copper nanopillars

    Get PDF
    Our current understanding of size-dependent strength in nano- and microscale crystals is centered around the idea that the overall strength is determined by the stress required to propagate dislocation sources. The nature and type of these dislocation sources is the subject of extensive debate, however, one commonality amongst these theories is that the ability of the free surface to absorb dislocations is a necessary condition for transition to a source controlled regime. In this work we demonstrate that atomic layer deposition (ALD) of conformal 5–25 nm thick TiO_2/Al_(2)O_3 coatings onto electroplated single crystalline copper pillars with diameters ranging from 75 nm to 1 μm generally inhibits the ability of a dislocation to vanish at the free surface. Uniaxial compression tests reveal increased strength and hardening relative to uncoated pillars at equivalent diameters, as well as a notable recovery of plastic strain during unloading, i.e. the Bauschinger effect. Unlike previous reports, these coated pillars retained the stochastic signature in their stress–strain curves. We explain these observations within the framework of a size-dependent strength theory based on a single arm source model, dislocation theory, and microstructural analysis by transmission electron microscopy

    Policy instruments in the Common Agricultural Policy

    Get PDF
    Policy changes in the Common Agricultural Policy (CAP) can be explained in terms of the exhaustion and long-term contradictions of policy instruments. Changes in policy instruments have reoriented the policy without any change in formal Treaty goals. The social and economic efficacy of instruments in terms of evidence-based policy analysis was a key factor in whether they were delegitimized. The original policy instruments were generally dysfunctional, but reframing the policy in terms of a multifunctionality paradigm permitted the development of more efficacious instruments. A dynamic interaction takes place between the instruments and policy informed by the predominant discourses

    Book Reviews

    Get PDF

    Gaussians versus back-to-back exponentials: a numerical study

    Get PDF
    The underlying magnetic field distribution in many samples studied by the mu R technique is asymmetric. Despite this, quite often fit functions assuming symmetric (Gaussian) distributions are used. Here, a back-to-back exponential function, which can be made asymmetric with fit parameters, is studied numerically alongside a Gaussian function to see how well each fits symmetric and asymmetric simulated data. Both fit symmetric data well, but the back-to-back exponential is found to be superior for fitting asymmetric data

    Magnetic Fields of Vortices in a Superconducting Thin Film

    Get PDF
    The magnetic fields associated with a single superconducting vortex traversing a thin film are calculated. The formulation of Pearl, which has been used for a geometry in which for z0 one has superconducting material, is extended to the case of a thin film. For the thin film, the flux in the mid-plane is less than a flux quantum unless one uses a very large radius. For instance a 100 nm film with a 130 nm penetration depth (lambda) has only 80% of a flux quantum within a radius of 1.5 mu m = 11.5.lambda. At 10 mu m 96% is enclosed. The magnetic field near the surface in both geometries has a significant radial component. The fields for a vortex array are then obtained by summing the fields from nearby vortices. The measurability of the field distributions is discussed

    The Ultrasensitivity of Living Polymers

    Full text link
    Synthetic and biological living polymers are self-assembling chains whose chain length distributions (CLDs) are dynamic. We show these dynamics are ultrasensitive: even a small perturbation (e.g. temperature jump) non-linearly distorts the CLD, eliminating or massively augmenting short chains. The origin is fast relaxation of mass variables (mean chain length, monomer concentration) which perturbs CLD shape variables before these can relax via slow chain growth rate fluctuations. Viscosity relaxation predictions agree with experiments on the best-studied synthetic system, alpha-methylstyrene.Comment: 4 pages, submitted to Phys. Rev. Let

    Polymer-specific effects of bulk relaxation and stringlike correlated motion in the dynamics of a supercooled polymer melt

    Full text link
    We analyze dynamical heterogeneities in a simulated “bead-spring” model of a nonentangled, supercooled polymer melt. We explore the importance of chain connectivity on the spatially heterogeneous motion of the monomers. We find that when monomers move, they tend to follow each other in one-dimensional paths, forming strings as previously reported in atomic liquids and colloidal suspensions. The mean string length is largest at a time close to the peak time of the mean cluster size of mobile monomers. This maximum string length increases, roughly in an exponential fashion, on cooling toward the critical temperature TMCTTMCT of the mode-coupling theory, but generally remains small, although large strings involving ten or more monomers are observed. An important contribution to this replacement comes from directly bonded neighbors in the chain. However, mobility is not concentrated along the backbone of the chains. Thus, a relaxation mechanism in which neighboring mobile monomers along the chain move predominantly along the backbone of the chains, seems unlikely for the system studied. © 2003 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69784/2/JCPSA6-119-10-5290-1.pd

    Structural Color 3D Printing By Shrinking Photonic Crystals

    Get PDF
    The rings, spots and stripes found on some butterflies, Pachyrhynchus weevils, and many chameleons are notable examples of natural organisms employing photonic crystals to produce colorful patterns. Despite advances in nanotechnology, we still lack the ability to print arbitrary colors and shapes in all three dimensions at this microscopic length scale. Commercial nanoscale 3D printers based on two-photon polymerization are incapable of patterning photonic crystal structures with the requisite ~300 nm lattice constant to achieve photonic stopbands/ bandgaps in the visible spectrum and generate colors. Here, we introduce a means to produce 3D-printed photonic crystals with a 5x reduction in lattice constants (periodicity as small as 280 nm), achieving sub-100-nm features with a full range of colors. The reliability of this process enables us to engineer the bandstructures of woodpile photonic crystals that match experiments, showing that observed colors can be attributed to either slow light modes or stopbands. With these lattice structures as 3D color volumetric elements (voxels), we printed 3D microscopic scale objects, including the first multi-color microscopic model of the Eiffel Tower measuring only 39-microns tall with a color pixel size of 1.45 microns. The technology to print 3D structures in color at the microscopic scale promises the direct patterning and integration of spectrally selective devices, such as photonic crystal-based color filters, onto free-form optical elements and curved surfaces
    corecore