921 research outputs found

    Cal-OSHA

    Get PDF

    Annotated check-list of plants occuring in lake Manyara National Park

    Get PDF
    Volume: 2

    Boosting the antimicrobial action of vancomycin formulated in shellac nanoparticles of dual-surface functionality

    Get PDF
    We report a strong amplification of the antimicrobial action of vancomycin (VCM) encapsulated in shellac nanoparticles (NPs) with dual surface functionalisation. These shellac nanocarriers for VCM were produced in two steps: (i) a pH drop from aqueous ammonium shellac solution containing Poloxamer 407 (P407) as a steric stabilising polymer in solution of vancomycin hydrochloride, and (ii) subsequent doping with the insoluble cationic surfactant octadecyltrimethylammonium bromide (ODTAB) though a solvent change to yield cationic surface functionality. We evaluated the encapsulation efficiency of VCM and its release profiles from these nanocarriers. This study explored the antibiotic action of these VCM nanocarriers at the various stages of their preparation which helped us to evaluate how they could be made to work efficiently, to adapt their design and demonstrate the role of the nanocarrier dual functionalisation on its antibiotic action and delivery. The antibiotic effect of VCM loaded in such versatile functionalised shellac nanocarriers was tested on three different proxy microorganisms, C. reinhardtii, S. cerevisiae and E. coli. We also compared the antibiotic effect of free VCM with non-coated VCM-loaded nanocarriers at the same overall concentrations. The ODTAB coating of the shellac NPs strongly enhanced the antibiotic action of the encapsulated VCM across all tested microorganisms. The enhanced VCM action is explained with the increased electrostatic adhesion between the ODTAB-coated VCM-loaded shellac NPs and the negatively charged surface of the microbial cell walls which allows local delivery of VCM with a high concentration directly on the cell membrane. This nanocarrier-mediated boost of the antibiotic action may potentially breathe new life into old antibiotics and help to fight off antibiotic resistance by making them more effective

    A new liver perfusion and preservation system for transplantation Research in large animals

    Get PDF
    A kidney perfusion machine, model MOX-100 (Waters Instruments, Ltd, Rochester, MN) was modified to allow continuous perfusion of the portal vein and pulsatile perfusion of the hepatic artery of the liver. Additional apparatus consists of a cooling system, a membrane oxygenator, a filter for foreign bodies, and bubble traps. This system not only allows hypothermic perfusion preservation of the liver graft, but furthermore enables investigation of ex vivo simulation of various circulatory circumstances in which physiological perfusion of the liver is studied. We have used this system to evaluate the viability of liver allografts preserved by cold storage. The liver was placed on the perfusion system and perfused with blood with a hematocrit of approximately 20% and maintained at 37°C for 3 h. The flows of the hepatic artery and portal vein were adjusted to 0.33 mL and 0.67 mL/g of liver tissue, respectively. Parameters of viability consisted of hourly bile output, oxygen consumption, liver enzymes, electrolytes, vascular resistance, and liver histology. This method of liver assessment in large animals will allow the objective evaluation of organ viability for transplantation and thereby improve the outcome of organ transplantation. Furthermore, this pump enables investigation into the pathophysiology of liver ischemia and preservation. © 1990 Informa UK Ltd All rights reserved: reproduction in whole or part not permitted

    Obesity and Albuminuria Among Adults With Type 2 Diabetes: The Look AHEAD (Action for Health in Diabetes) Study

    Get PDF
    This is an uncopyedited electronic version of an article accepted for publication in Diabetes Care. The American Diabetes Association, publisher of Diabetes Care, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of Diabetes Care in print and online a
    corecore