39 research outputs found
Magnetogenesis and the dynamics of internal dimensions
The dynamical evolution of internal space-like dimensions breaks the
invariance of the Maxwell's equations under Weyl rescaling of the (conformally
flat) four-dimensional metric. Depending upon the number and upon the dynamics
of internal dimensions large scale magnetic fields can be created. The
requirements coming from magnetogenesis together with the other cosmological
constraints are examined under the assumption that the internal dimensions
either grow or shrink (in conformal time) prior to a radiation dominated epoch.
If the internal dimensions are growing the magnitude of the generated magnetic
fields can seed the galactic dynamo mechanism.Comment: 27 in RevTex style, four figure
Stellar structure and compact objects before 1940: Towards relativistic astrophysics
Since the mid-1920s, different strands of research used stars as "physics
laboratories" for investigating the nature of matter under extreme densities
and pressures, impossible to realize on Earth. To trace this process this paper
is following the evolution of the concept of a dense core in stars, which was
important both for an understanding of stellar evolution and as a testing
ground for the fast-evolving field of nuclear physics. In spite of the divide
between physicists and astrophysicists, some key actors working in the
cross-fertilized soil of overlapping but different scientific cultures
formulated models and tentative theories that gradually evolved into more
realistic and structured astrophysical objects. These investigations culminated
in the first contact with general relativity in 1939, when J. Robert
Oppenheimer and his students George Volkoff and Hartland Snyder systematically
applied the theory to the dense core of a collapsing neutron star. This
pioneering application of Einstein's theory to an astrophysical compact object
can be regarded as a milestone in the path eventually leading to the emergence
of relativistic astrophysics in the early 1960s.Comment: 83 pages, 4 figures, submitted to the European Physical Journal
Galaxy bulges and their massive black holes: a review
With references to both key and oft-forgotten pioneering works, this article
starts by presenting a review into how we came to believe in the existence of
massive black holes at the centres of galaxies. It then presents the historical
development of the near-linear (black hole)-(host spheroid) mass relation,
before explaining why this has recently been dramatically revised. Past
disagreement over the slope of the (black hole)-(velocity dispersion) relation
is also explained, and the discovery of sub-structure within the (black
hole)-(velocity dispersion) diagram is discussed. As the search for the
fundamental connection between massive black holes and their host galaxies
continues, the competing array of additional black hole mass scaling relations
for samples of predominantly inactive galaxies are presented.Comment: Invited (15 Feb. 2014) review article (submitted 16 Nov. 2014). 590
references, 9 figures, 25 pages in emulateApJ format. To appear in "Galactic
Bulges", E. Laurikainen, R.F. Peletier, and D.A. Gadotti (eds.), Springer
Publishin
Track D Social Science, Human Rights and Political Science
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138414/1/jia218442.pd
Retinal periphlebitis in ulcerative colitis.
A man presented with unilateral visual blurring associated with bilateral retinal periphlebitis which was felt to be a complication of his biopsy-proven active ulcerative colitis. Retinal periphlebitis has been associated rarely with some forms of colitis but we can find no report of its occurrence in association with ulcerative colitis although other ocular inflammatory disorders are well recognized