34 research outputs found

    Ongoing data reduction, theoretical studies

    Get PDF
    A nonspecific review of theory, correlative date analysis and supporting research and technology is presented. Title pages in some of the following areas are included: (1) magnetosphere boundary observations; (2) venus ionosphere and solar wind interaction; (3) ISEE-C plasma wave investigation, and (4) solar system plasmas

    Real time animation of space plasma phenomena

    Get PDF
    In pursuit of real time animation of computer simulated space plasma phenomena, the code was rewritten for the Massively Parallel Processor (MPP). The program creates a dynamic representation of the global bowshock which is based on actual spacecraft data and designed for three dimensional graphic output. This output consists of time slice sequences which make up the frames of the animation. With the MPP, 16384, 512 or 4 frames can be calculated simultaneously depending upon which characteristic is being computed. The run time was greatly reduced which promotes the rapid sequence of images and makes real time animation a foreseeable goal. The addition of more complex phenomenology in the constructed computer images is now possible and work proceeds to generate these images

    Ongoing data reduction, theoretical studies, and supporting research in magnetospheric physics

    Get PDF
    The investigators published a very large number of space science research papers, and in almost all cases these papers involved correlative multi-spacecraft studies. A tabulation of these research papers is provided. Quarterly progress reports for the second contractual period are included

    Scale lengths in quasi-parallel shocks

    Get PDF
    Examples of an interplanetary and the bow shock illustrate the small relative size of the electrostatic layer relative to the scale of the magnetic fluctuations in quasi-parallel shocks. While both examples are supercritical, the interplanetary example is marginally so, showing a thickness in absolute and convected ion larmor radii units that is thicker (approximately 13 U/omega sub ci) than at the bow shock (approximately omega sub ci). The fluid speed changes abruptly in the quasi-parallel shock on this shorter scale. The increase in electron and ion random energies also is clearly seen on this shorter scale. In the interplanetary example the scale of the electric layer is certainly less than 1/60th that of the up or downstreams magnetic fluctuations. The thickness of the earth's bow shock deceleration layer is dramatically narrower than any domain of upstream waves as controlled by reflected, intermediate, or diffuse ions

    La théorie variation des rayons complexes pour le calcul des vibrations moyennes fréquences

    Get PDF
    A new approach named the "Variational Theory of Complex Rays" is introduced for computing the vibrations of elastic structures weakly damped in the medium frequency range. Emphasis has been placed here on the most fundamental aspects. The effective quantities (elastic energy, vibration intensity ...) are evaluated after computing a small system of equations which does not derive from a finite element dicretization of the structure. Numerical examples related to plates show the interest and the possibilities ofthe VTRC

    Jupiter’s bow shock structure

    No full text
    corecore