440 research outputs found

    Tissue-selective expression of a conditionally-active ROCK2-estrogen receptor fusion protein

    Get PDF
    The serine/threonine kinases ROCK1 and ROCK2 are central mediators of actomyosin contractile force generation that act downstream of the RhoA small GTP-binding protein. As a result, they have key roles in regulating cell morphology and proliferation, and have been implicated in numerous pathological conditions and diseases including hypertension and cancer. Here we describe the generation of a gene-targeted mouse line that enables CRE-inducible expression of a conditionally-active fusion between the ROCK2 kinase domain and the hormone-binding domain of a mutated estrogen receptor (ROCK2:ER). This two-stage system of regulation allows for tissue-selective expression of the ROCK2:ER fusion protein, which then requires administration of estrogen analogues such as tamoxifen or 4-hydroxytamoxifen to elicit kinase activity. This conditional gain-of-function system was validated in multiple tissues by crossing with mice expressing CRE recombinase under the transcriptional control of cytokeratin14 (K14), murine mammary tumor virus (MMTV) or cytochrome P450 Cyp1A1 (Ah) promoters, driving appropriate expression in the epidermis, mammary or intestinal epithelia respectively. Given the interest in ROCK signaling in normal physiology and disease, this mouse line will facilitate research into the consequences of ROCK activation that could be used to complement conditional knockout models

    Comparing placentas from normal and abnormal pregnancies

    Get PDF
    This report describes work carried out at a Mathematics-in-Medicine Study Group. It is believed that placenta shape villous network characteristics are strongly linked to the placenta’s efficiency, and hence to pregnancy outcome. We were asked to consider mathematical ways to describe the shape and other characteristics of a placenta, as well as forming mathematical models for placenta development. In this report we propose a number of possible measure of placental shape, form, and efficiency, which can be computed from images already obtained. We also consider various models for the early development of placentas and the growth of the villous tree

    Transgenic models of skin diseases

    Get PDF
    Background: Transgenic animals have greatly enhanced our understanding of the contribution of various structural and regulatory components to epidermal biology. The expression of mutant versions of these components in the epidermis of transgenic mice has generated animal models of specific human skin diseases

    Epidermal ROCK2-induces AKT1/GSK3β/β-catenin, NFκB and dermal tenascin-C; but enhanced differentiation and p53/p21 inhibit papilloma

    Get PDF
    ROCK2 roles in epidermal differentiation and carcinogenesis have been investigated in mice expressing an RU486-inducible, 4HT-activated ROCK2 transgene (K14.creP/lslROCKer). RU486/4HT-mediated ROCKer activation induced epidermal hyperplasia similar to cutaneous oncogenic rasHa (HK1.ras); however ROCKer did not elicit papillomas. Instead, anomalous basal-layer ROCKer expression corrupted normal ROCK2 roles underlying epidermal rigidity/stiffness and barrier maintanance, resulting in premature keratin K1, loricrin and filaggrin expression. Also, hyperproliferative/stress-associated keratin K6 was reduced; possibly reflecting altered ROCK2 roles in epidermal rigidity and keratinocyte flexibility/migration during wound healing. Consistent with increased proliferation, K14.creP/lslROCKer hyperplasia displayed supra-basal-to-basal increases in activated p-AKT1, inactivated p-GSK3β ser9 and membranous/nuclear β-catenin expression together with weak NFκB, which were absent in equivalent HK1.ras hyperplasia. Furthermore, ROCKer-mediated increases in epidermal rigidity via p-MypT1 inactivation/elevated MLC, coupled to anomalous β-catenin expression, induced tenascin C-positive dermal fibroblasts. Alongside an altered ECM, these latent tenascin C-positive dermal fibroblasts may become putative pre-cancer–associated fibroblasts (pre-CAFs) and establish a susceptibility that subsequently contributes to tumour progression. However, anomalous differentiation was also accompanied by an immediate increase in basal-layer p53/p21 expression; suggesting that while ROCK2/AKT1/β-catenin activation increased keratinocyte proliferation resulting in hyperplasia, compensatory p53/p21 and accelerated differentiation helped inhibit papillomatogenesis

    Backward bifurcation, equilibrium and stability phenomena in a three-stage extended BRSV epidemic model

    Get PDF
    In this paper we consider the phenomenon of backward bifurcation in epidemic modelling illustrated by an extended model for Bovine Respiratory Syncytial Virus (BRSV) amongst cattle. In its simplest form, backward bifurcation in epidemic models usually implies the existence of two subcritical endemic equilibria for R 0 < 1, where R 0 is the basic reproductive number, and a unique supercritical endemic equilibrium for R 0 > 1. In our three-stage extended model we find that more complex bifurcation diagrams are possible. The paper starts with a review of some of the previous work on backward bifurcation then describes our three-stage model. We give equilibrium and stability results, and also provide some biological motivation for the model being studied. It is shown that backward bifurcation can occur in the three-stage model for small b, where b is the common per capita birth and death rate. We are able to classify the possible bifurcation diagrams. Some realistic numerical examples are discussed at the end of the paper, both for b small and for larger values of b

    Acylative kinetic resolution of alcohols using a recyclable polymer-supported isothiourea catalyst in batch and flow

    Get PDF
    The authors thank the EPSRC Centre for Doctoral Training in Critical Resource Catalysis (CRITICAT, grant code EP/L016419/1, R.M.N.P.) for funding. Financial support from the EPSRC (EP/K000411/1) is gratefully acknowledged (R.C.). The European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) ERC Grant Agreement No. 279850 is also acknowledged. A.D.S. thanks the Royal Society for a Wolfson Research Merit Award. C.R.-E. and M.A.P. acknowledge the financial support from CERCA Pro-gramme/Generalitat de Catalunya, MINECO (CTQ2015-69136-R, AEI/MINECO/FEDER, UE and Severo Ochoa Excellence Ac-creditation 2014–2018, SEV-2013-0319) and DEC Generalitat de Catalunya (Grant 2014SGR827).A polystyrene-supported isothiourea catalyst, based on the homogeneous catalyst HyperBTM, has been prepared and used for the acylative kinetic resolution of secondary alcohols. A wide range of alcohols, including benzylic, allylic and propargylic alcohols, cycloalkanol derivatives and a 1,2-diol, has been resolved using either propionic or isobutyric anhydride with good to excellent selectivity factors obtained (28 examples, s up to 622). The catalyst can be recovered and reused by a simple filtration and washing sequence, with no special precautions needed. The recyclability of the catalyst was demonstrated (15 cycles) with no significant loss in either activity or selectivity. The recyclable catalyst was also used for the sequential resolution of 10 different alcohols us-ing different anhydrides with no cross-contamination between cycles. Finally, successful application in a continuous flow process demonstrated the first example of an immobilized Lewis base catalyst used for the kinetic resolution of alcohols in flow.PostprintPeer reviewe
    • …
    corecore