758 research outputs found

    Permutation asymmetry inducing entanglement between degrees of freedom in multiphoton states

    Full text link
    We describe and examine entanglement between different degrees of freedom in multiphoton states based on the permutation properties. From the state description, the entanglement comes from the permutation asymmetry. According to the different permutation properties, the multiphoton states can be divided into several parts. It will help to deal with the multiphoton interference, which can be used as the measurement of the entanglement.Comment: Final versio

    Efficient Multi-Party Quantum Secret Sharing Schemes

    Full text link
    In this work, we generalize the quantum secret sharing scheme of Hillary, Bu\v{z}ek and Berthiaume[Phys. Rev. A59, 1829(1999)] into arbitrary multi-parties. Explicit expressions for the shared secret bit is given. It is shown that in the Hillery-Bu\v{z}ek-Berthiaume quantum secret sharing scheme the secret information is shared in the parity of binary strings formed by the measured outcomes of the participants. In addition, we have increased the efficiency of the quantum secret sharing scheme by generalizing two techniques from quantum key distribution. The favored-measuring-basis Quantum secret sharing scheme is developed from the Lo-Chau-Ardehali technique[H. K. Lo, H. F. Chau and M. Ardehali, quant-ph/0011056] where all the participants choose their measuring-basis asymmetrically, and the measuring-basis-encrypted Quantum secret sharing scheme is developed from the Hwang-Koh-Han technique [W. Y. Hwang, I. G. Koh and Y. D. Han, Phys. Lett. A244, 489 (1998)] where all participants choose their measuring-basis according to a control key. Both schemes are asymptotically 100% in efficiency, hence nearly all the GHZ-states in a quantum secret sharing process are used to generate shared secret information.Comment: 7 page

    Physical model for the generation of ideal resources in multipartite quantum networking

    Full text link
    We propose a physical model for generating multipartite entangled states of spin-ss particles that have important applications in distributed quantum information processing. Our protocol is based on a process where mobile spins induce the interaction among remote scattering centers. As such, a major advantage lies on the management of stationary and well separated spins. Among the generable states, there is a class of NN-qubit singlets allowing for optimal quantum telecloning in a scalable and controllable way. We also show how to prepare Aharonov, W and Greenberger-Horne-Zeilinger states.Comment: 5 pages, 2 figures. Format revise

    Sequential Generation of Matrix-Product States in Cavity QED

    Get PDF
    We study the sequential generation of entangled photonic and atomic multi-qubit states in the realm of cavity QED. We extend the work of C. Schoen et al. [Phys. Rev. Lett. 95, 110503 (2005)], where it was shown that all states generated in a sequential manner can be classified efficiently in terms of matrix-product states. In particular, we consider two scenarios: photonic multi-qubit states sequentially generated at the cavity output of a single-photon source and atomic multi-qubit states generated by their sequential interaction with the same cavity mode.Comment: 11 page

    Generating entangled photon pairs from a cavity-QED system

    Full text link
    We propose a scheme for the controlled generation of Einstein-Podosky-Rosen (EPR) entangled photon pairs from an atom coupled to a high Q optical cavity, extending the prototype system as a source for deterministic single photons. A thorough theoretical analysis confirms the promising operating conditions of our scheme as afforded by currently available experimental setups. Our result demonstrates the cavity QED system as an efficient and effective source for entangled photon pairs, and shines new light on its important role in quantum information science.Comment: It has recently come to our attention that the experiment by T. Wilk, S. C. Webster, A. Kuhn and G. Rempe, published in Science 317, 488 (2007), exactly realizes what we proposed in this article, which is published in Phy. Rev. A 040302(R) (2005

    Quantum mechanics and elements of reality inferred from joint measurements

    Get PDF
    The Einstein-Podolsky-Rosen argument on quantum mechanics incompleteness is formulated in terms of elements of reality inferred from joint (as opposed to alternative) measurements, in two examples involving entangled states of three spin-1/2 particles. The same states allow us to obtain proofs of the incompatibility between quantum mechanics and elements of reality.Comment: LaTeX, 12 page

    Detection of Gravitational Wave - An Application of Relativistic Quantum Information Theory

    Get PDF
    We show that a passing gravitational wave may influence the spin entropy and spin negativity of a system of NN massive spin-1/2 particles, in a way that is characteristic of the radiation. We establish the specific conditions under which this effect may be nonzero. The change in spin entropy and negativity, however, is extremely small. Here, we propose and show that this effect may be amplified through entanglement swapping. Relativistic quantum information theory may have a contribution towards the detection of gravitational wave.Comment: 9 page

    Teleportation and Secret Sharing with Pure Entangled States

    Get PDF
    We present two optimal methods of teleporting an unknown qubit using any pure entangled state. We also discuss how such methods can also have succesful application in quantum secret sharing with pure multipartite entangled states.Comment: Latex, 13 pages, submitted to PRA. One sub section already appeared in the archive: quant-ph /990701

    Position-momentum local realism violation of the Hardy type

    Get PDF
    We show that it is, in principle, possible to perform local realism violating experiments of the Hardy type in which only position and momentum measurements are made on two particles emanating from a common source. In the optical domain, homodyne detection of the in-phase and out-of-phase amplitude components of an electromagnetic field is analogous to position and momentum measurement. Hence, local realism violations of the Hardy type are possible in optical systems employing only homodyne detection.Comment: 10 pages, no figures, to be published in Physical Review

    Quantum divisibility test and its application in mesoscopic physics

    Full text link
    We present a quantum algorithm to transform the cardinality of a set of charged particles flowing along a quantum wire into a binary number. The setup performing this task (for at most N particles) involves log_2 N quantum bits serving as counters and a sequential read out. Applications include a divisibility check to experimentally test the size of a finite train of particles in a quantum wire with a one-shot measurement and a scheme allowing to entangle multi-particle wave functions and generating Bell states, Greenberger-Horne-Zeilinger states, or Dicke states in a Mach-Zehnder interferometer.Comment: 9 pages, 5 figure
    corecore