58,239 research outputs found
Recommended from our members
Three-dimensional cometary dust coma modelling in the collisionless regime: strengths and weaknesses
Inverse coma and tail modelling of comets based on the method developed by Finson & Probstein is commonly used to analyse cometary coma images. Models of this type often contain a large number of assumptions that may not be constrained unless wide temporal or spectral coverage is available and the comets are bright and at relatively small geocentric distance. They are used to predict physical parameters, such as the mass distribution of the dust, but rarely give assessments of the accuracy of the estimate. A three-dimensional cometary dust coma model in the collisionless regime has been developed to allow the effectiveness of such models to constrain dust coma properties to be tested. The model is capable of simulating the coma morphology for the following input parameters: the comet nucleus shape, size, rotation, emission function (including active fraction and jets), grain velocity distribution (and dispersion), size distribution, dust production rate, grain material and light scattering from the cometary dust.
Characterization of the model demonstrates that the mass distribution cannot be well constrained as is often assumed; the cumulative mass distribution index ? can only be constrained to within ±0.15. The model is highly sensitive to the input grain terminal velocity distribution so model input can be tested with a large degree of confidence. Complex secondary parameters such as jets, rotation and grain composition all have an effect on the structure of the coma in similar ways, so unique solutions for these parameters cannot be derived from a single optical image alone. Multiple images at a variety of geometries close in time can help constrain these effects.
The model has been applied to photometric observations of comets 126P/IRAS and 46P/Wirtanen to constrain a number of physical properties including the dust production rate and mass distribution index. The derived dust production rate (Qdust) for 46P/Wirtanen was 3+7/1.5 kg s1 at a pre-perihelion heliocentric distance of 1.8 au, and for P/IRAS was 50+100/20 kg s1 at a pre-perihelion heliocentric distance of 1.7 au; both comets exhibited a mass distribution index ? = 0.8 ± 0.15
What is novel in quantum transport for mesoscopics?
The understanding of mesoscopic transport has now attained an ultimate
simplicity. Indeed, orthodox quantum kinetics would seem to say little about
mesoscopics that has not been revealed - nearly effortlessly - by more popular
means. Such is far from the case, however. The fact that kinetic theory remains
very much in charge is best appreciated through the physics of a quantum point
contact. While discretization of its conductance is viewed as the exclusive
result of coherent, single-electron-wave transmission, this does not begin to
address the paramount feature of all metallic conduction: dissipation. A
perfect quantum point contact still has finite resistance, so its ballistic
carriers must dissipate the energy gained from the applied field. How do they
manage that? The key is in standard many-body quantum theory, and its
conservation principles.Comment: 10 pp, 3 figs. Invited talk at 50th Golden Jubilee DAE Symposium,
BARC, Mumbai, 200
Ballistic transport is dissipative: the why and how
In the ballistic limit, the Landauer conductance steps of a mesoscopic
quantum wire have been explained by coherent and dissipationless transmission
of individual electrons across a one-dimensional barrier. This leaves untouched
the central issue of conduction: a quantum wire, albeit ballistic, has finite
resistance and so must dissipate energy. Exactly HOW does the quantum wire shed
its excess electrical energy? We show that the answer is provided, uniquely, by
many-body quantum kinetics. Not only does this inevitably lead to universal
quantization of the conductance, in spite of dissipation; it fully resolves a
baffling experimental result in quantum-point-contact noise. The underlying
physics rests crucially upon the action of the conservation laws in these open
metallic systems.Comment: Invited Viewpoint articl
High-field noise in metallic diffusive conductors
We analyze high-field current fluctuations in degenerate conductors by
mapping the electronic Fermi-liquid correlations at equilibrium to their
semiclassical non-equilibrium form. Our resulting Boltzmann description is
applicable to diffusive mesoscopic wires. We derive a non-equilibrium
connection between thermal fluctuations of the current and resistive
dissipation. In the weak-field limit this is the canonical fluctuation-
dissipation theorem. Away from equilibrium, the connection enables explicit
calculation of the excess ``hot-electron'' contribution to the thermal
spectrum. We show that excess thermal noise is strongly inhibited by Pauli
exclusion. This behaviour is generic to the semiclassical metallic regime.Comment: 13 pp, one fig. Companion paper to cond-mat/9911251. Final version,
to appear in J. Phys.: Cond. Ma
Cow, farm, and herd management factors in the dry period associated with raised somatic cell counts in early lactation
This study investigated cow characteristics, farm facilities, and herd management strategies during the dry period to examine their joint influence on somatic cell counts (SCC) in early lactation. Data from 52 commercial dairy farms throughout England and Wales were collected over a 2-yr period. For the purpose of analysis, cows were separated into those housed for the dry period (6,419 cow-dry periods) and those at pasture (7,425 cow-dry periods). Bayesian multilevel models were specified with 2 response variables: ln SCC (continuous) and SCC >199,000 cells/mL (binary), both within 30 d of calving. Cow factors associated with an increased SCC after calving were parity, an SCC >199,000 cells/mL in the 60 d before drying off, increasing milk yield 0 to 30 d before drying off, and reduced DIM after calving at the time of SCC estimation. Herd management factors associated with an increased SCC after calving included procedures at drying off, aspects of bedding management, stocking density, and method of pasture grazing. Posterior predictions were used for model assessment, and these indicated that model fit was generally good. The research demonstrated that specific dry-period management strategies have an important influence on SCC in early lactation
Coulomb screening in mesoscopic noise: a kinetic approach
Coulomb screening, together with degeneracy, is characteristic of the
metallic electron gas. While there is little trace of its effects in transport
and noise in the bulk, at mesoscopic scales the electronic fluctuations start
to show appreciable Coulomb correlations. Within a strictly standard Boltzmann
and Fermi-liquid framework, we analyze these phenomena and their relation to
the mesoscopic fluctuation-dissipation theorem, which we prove. We identify two
distinct screening mechanisms for mesoscopic fluctuations. One is the
self-consistent response of the contact potential in a non-uniform system. The
other couples to scattering, and is an exclusively non-equilibrium process.
Contact-potential effects renormalize all thermal fluctuations, at all scales.
Collisional effects are relatively short-ranged and modify non-equilibrium
noise. We discuss ways to detect these differences experimentally.Comment: Source: REVTEX. 16 pp.; 7 Postscript figs. Accepted for publication
in J. Phys.: Cond. Ma
Recommended from our members
Stardust microcrater residue compositional groups
Compositional groups are defined in residue from Stardust craters (1-9 Dc) by qualitative EDS. These compositional groups are being further studied by a FIB-SEM technique to determine representative residue compositions
Positron scattering and annihilation on noble gas atoms
Positron scattering and annihilation on noble gas atoms below the positronium
formation threshold is studied ab initio using many-body theory methods. The
many-body theory provides a near-complete understanding of the
positron-noble-gas-atom system at these energies and yields accurate numerical
results. It accounts for positron-atom and electron-positron correlations,
e.g., polarization of the atom by the incident positron and the
non-perturbative process of virtual positronium formation. These correlations
have a large effect on the scattering dynamics and result in a strong
enhancement of the annihilation rates compared to the independent-particle
mean-field description. Computed elastic scattering cross sections are found to
be in good agreement with recent experimental results and Kohn variational and
convergent close-coupling calculations. The calculated values of the
annihilation rate parameter (effective number of electrons
participating in annihilation) rise steeply along the sequence of noble gas
atoms due to the increasing strength of the correlation effects, and agree well
with experimental data.Comment: 24 pages, 17 figure
Electronic spin-triplet nematic with a twist
We analyze a model of itinerant electrons interacting through a quadrupole
density-density repulsion in three dimensions. At the mean field level, the
interaction drives a continuous Pomeranchuk instability towards -wave,
spin-triplet nematic order, which simultaneously breaks the SU(2) spin-rotation
and spatial rotational symmetries. This order results in spin antisymmetric,
elliptical deformations of the Fermi surfaces of up and down spins. We show
that the effects of quantum fluctuations are similar to those in metallic
ferromagnets, rendering the nematic transition first-order at low temperatures.
Using the fermionic quantum order-by-disorder approach to self-consistently
calculate fluctuations around possible modulated states, we show that the
first-order transition is pre-empted by the formation of a nematic state that
is intertwined with a helical modulation in spin space. Such a state is closely
related to -wave bond density wave order in square-lattice systems.
Moreover, we show that it may coexist with a modulated, -wave
superconducting state.Comment: 15 pages, 9 figure
- …