16 research outputs found

    The wood boring amphipod Chelura terebrans

    Get PDF
    Chelura terebrans is a widely distributed wood boring amphipod belonging to the little studied family Cheluridae. Previous studies have hinted that C. terebrans belongs to a small number of animals capable of degrading lignocellulose without the aid of symbiotic gut microorganisms. This study utilises a broad range of techniques to gain a better understanding of C. terebrans and their ability to digest wood. Molecular phylogenetic analyses of two Chelurid species largely agree with the current taxonomic organisation of this family. Examination of C. terebrans using scanning electron microscopy has offered a better understanding of their digestive system and revealed, with the exception of robust lateralia, few morphological adaptations to accommodate such an unusual diet. This examination also found no evidence of gut-resident microflora. Furthermore, quantitative real-time PCR confirmed the absence of any substantial resident symbiotic extra- or intracellular bacteria in the digestive tract by revealing very low levels of bacterial 16S gene sequences in comparison to the symbiont-containing isopod Porcellio scaber. Despite finding no evidence for resident symbiont gut-microflora, in-gel and in vitro enzymatic assays using extracts isolated from the hepatopancreas suggests that C. terebrans possesses a considerable repertoire of endogenous enzymatic capabilities useful for the digestion of wood, including mannosidase, β-glucosidase and β-xylosidase, endo-1, 4-β-glucanase and endo-1, 4-β-xylanase, with extracts also possessing mono- and diphenol oxidase activity. Furthermore, mass spectrometry analysis on gel regions presenting high mono- and diphenol oxidase activity detected several proteins belonging to the glycosyl hydrolase family and haemocyanins. Two transcriptomic libraries were obtained from the hepatopancreases of C. terebrans fed on a diet of either beech (Fagus sylvatica) or Scots pine (Pinus sylvestris). These data provided sequences and the relative abundances of genes thought to be involved in lignocellulose digestion. In both cases, a significant number of the total ESTs contributed towards contigs corresponding to genes for glycosyl hydrolases and haemocyanins. Furthermore, overall expression of each glycosyl hydrolase suggested variation according to the substrate on which C. terebrans were fed. Comparisons of the relative gene expression seen in the C. terebrans transcriptome with those found in both the wood boring isopod Limnoria quadripunctata and the non boring amphipod Echinogammarus marinus offer insight into the genes important for lignocellulose digestion. This study represents substantial progress in our understanding of how C. terebrans digests wood and has also opened up new avenues of investigation by revealing C. terebrans as a potential source of novel lignocellulolytic enzymes.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Pronounced and prevalent intersexuality does not impede the ‘Demon Shrimp’ invasion

    Get PDF
    Crustacean intersexuality is widespread and often linked to infection by sex-distorting parasites. However, unlike vertebrate intersexuality, its association with sexual dysfunction is unclear and remains a matter of debate. The ‘Demon Shrimp,’ Dikerogammarus haemobaphes, an amphipod that has invaded continental waterways, has recently become widespread in Britain. Intersexuality has been noted in D. haemobaphes but not investigated further. We hypothesise that a successful invasive population should not display a high prevalence of intersexuality if this condition represents a truly dysfunctional phenotype. In addition, experiments have indicated that particular parasite burdens in amphipods may facilitate invasions. The rapid and ongoing invasion of British waterways represents an opportunity to determine whether these hypotheses are consistent with field observations. This study investigates the parasites and sexual phenotypes of D. haemobaphes in British waterways, characterising parasite burdens using molecular screening, and makes comparisons with the threatened Gammarus pulex natives. We reveal that invasive and native populations have distinct parasitic profiles, suggesting the loss of G. pulex may have parasite-mediated eco-system impacts. Furthermore, the parasite burdens are consistent with those previously proposed to facilitate biological invasions. Our study also indicates that while no intersexuality occurs in the native G. pulex, approximately 50% of D. haemobaphes males present pronounced intersexuality associated with infection by the microsporidian Dictyocoela berillonum. This unambiguously successful invasive population presents, to our knowledge, the highest reported prevalence of male intersexuality. This is the clearest evidence to date that such intersexuality does not represent a form of debilitating sexual dysfunction that negatively impacts amphipod populations

    Population screening and transmission experiments indicate paramyxid-microsporidian co-infection in Echinogammarus marinus represents a non-hyperparasitic relationship between specific parasite strains

    Get PDF
    Phylogenetically distant parasites often infect the same host. Indeed, co-infections can occur at levels greater than expected by chance and are sometimes hyperparasitic. The amphipod Echinogammarus marinus presents high levels of co-infection by two intracellular and vertically transmitted parasites, a paramyxid (Paramarteilia sp. Em) and a microsporidian strain (Dictyocoela duebenum Em). This co-infection may be hyperparasitic and result from an exploitative ‘hitchhiking’ or a symbiotic relationship between the parasites. However, the best-studied amphipod species are often collected from contaminated environments and may be immune-compromised. Immune-challenged animals frequently present co-infections and contaminant-exposed amphipods present significantly higher levels of microsporidian infection. This suggests the co-infections in E. marinus may result from contaminant-associated compromised immunity. Inconsistent with hyperparasitism, we find that artificial infections transmit Paramarteilia without microsporidian. Our population surveys reveal the co-infection relationship is geographically widespread but find only chance co-infection between the Paramarteilia and another species of microsporidian, Dictyocoela berillonum. Furthermore, we identify a haplotype of the Paramarteilia that presents no co-infection, even in populations with otherwise high co-infection levels. Overall, our results do not support the compromised-immunity hypothesis but rather that the co-infection of E. marinus, although non-hyperparasitic, results from a relationship between specific Paramarteilia and Dictyocoela duebenum strains

    The genome sequence of the red compost earthworm, Lumbricus rubellus (Hoffmeister, 1843)

    Get PDF
    We present a genome assembly from an individual Lumbricus rubellus (the red compost earthworm; Annelida; Clitellata; Haplotaxida; Lumbricidae). The genome sequence is 787.5 megabases in span. Most of the assembly is scaffolded into 18 chromosomal pseudomolecules. The mitochondrial genome has also been assembled and is 15.81 kilobases in length. Gene annotation of this assembly on Ensembl identified 33,426 protein coding genes

    The genome sequence of the cabbage moth, Mamestra brassicae (Linnaeus, 1758)

    Get PDF
    We present a genome assembly from an individual male Mamestra brassicae (the Cabbage Moth; Arthropoda; Insecta; Lepidoptera; Noctuidae). The genome sequence is 576.2 megabases in span. Most of the assembly is scaffolded into 31 chromosomal pseudomolecules, including the Z sex chromosome. The mitochondrial genome has also been assembled and is 15.38 kilobases in length. Gene annotation of this assembly on Ensembl identified 12,891 protein coding genes

    Identifying conserved polychaete molecular markers of metal exposure: comparative analyses using the Alitta virens (Annelida, Lophotrochozoa) transcriptome

    Get PDF
    Polychaetes are vital for evaluating the effects of toxic metals in marine systems, and sensitive molecular biomarkers should be integral to monitoring efforts. However, the few polychaete markers that exist are inconsistent, even within the same species, failing to identify gene expression changes in metal-exposed animals incurring clear metabolic costs. Comparing previously characterised polychaete metal-responsive genes with those of another carefully selected species could identify biomarkers applicable across polychaetes. The ragworm Alitta virens (Sars, 1835) is particularly suited for such comparisons due to its dominance of fully saline coastal areas, widespread distribution, large biomass, and its phylogenetic position relative to other polychaete ‘omic’ resources. A transcriptome atlas for A. virens was generated and an RNASeq-qPCR screening approach was used to characterise the response to chronic exposures of environmentally relevant concentrations of copper and zinc in controlled mesocosms. Genes presenting dramatic expression changes in A. virens were compared with known metal-responsive genes in other polychaetes to identify new possible biomarkers and assess those currently used. This revealed some current markers should probably be abandoned (e.g. Atox1), while others, such as GST-Omega, should be used with caution, as different polychaete species appear to upregulate distinct GST-Omega orthologues. In addition, the comparisons give some indication of genes that are induced by metal exposure across phylogenetically divergent polychaetes, including a suite of haemoglobin subunits and linker chains that could play conserved roles in metal-stress response. Although such newly identified markers need further characterisation, they offer alternatives to current markers that are plainly insufficient

    Off-target stoichiometric binding identified from toxicogenomics explains why some species are more sensitive than others to a widely used neonicotinoid

    Get PDF
    Neonicotinoids are currently licensed for use in 120 countries, making accurate nontarget species sensitivity predictions critical. Unfortunately, such predictions are fraught with uncertainty, as sensitivity is extrapolated from only a few test species and neonicotinoid sensitivities can differ greatly between closely related taxa. Combining classical toxicology with de novo toxicogenomics could greatly improve sensitivity predictions and identify unexpectedly susceptible species. We show that there is a >30-fold differential species sensitivity (DSS) for the neonicotinoid imidacloprid between five earthworm species, a critical nontarget taxon. This variation could not be explained by differential toxicokinetics. Furthermore, comparing key motif expression in subunit genes of the classical nicotinic acetylcholine receptor (nAChR) target predicts only minor differences in the ligand binding domains (LBDs). In contrast, predicted dissimilarities in LBDs do occur in the highly expressed but nonclassical targets, acetylcholine binding proteins (AChBPs). Critically, the predicted AChBP divergence is capable of explaining DSS. We propose that high expression levels of putative nonsynaptic AChBPs with high imidacloprid affinities reduce imidacloprid binding to critical nAChRs involved in vital synaptic neurotransmission. This study provides a clear example of how pragmatic interrogation of key motif expression in complex multisubunit receptors can predict observed DSS, thereby informing sensitivity predictions for essential nontarget species

    Lignocellulose degradation mechanisms across the Tree of Life.

    Get PDF
    Organisms use diverse mechanisms involving multiple complementary enzymes, particularly glycoside hydrolases (GHs), to deconstruct lignocellulose. Lytic polysaccharide monooxygenases (LPMOs) produced by bacteria and fungi facilitate deconstruction as does the Fenton chemistry of brown-rot fungi. Lignin depolymerisation is achieved by white-rot fungi and certain bacteria, using peroxidases and laccases. Meta-omics is now revealing the complexity of prokaryotic degradative activity in lignocellulose-rich environments. Protists from termite guts and some oomycetes produce multiple lignocellulolytic enzymes. Lignocellulose-consuming animals secrete some GHs, but most harbour a diverse enzyme-secreting gut microflora in a mutualism that is particularly complex in termites. Shipworms however, house GH-secreting and LPMO-secreting bacteria separate from the site of digestion and the isopod Limnoria relies on endogenous enzymes alone. The omics revolution is identifying many novel enzymes and paradigms for biomass deconstruction, but more emphasis on function is required, particularly for enzyme cocktails, in which LPMOs may play an important role.The work of the teams at York, Portsmouth and Cambridge on development of ideas expressed in this review was supported by grants from BBSRC (BB/H531543/1, BB/L001926/1, BB/1018492/1, BB/K020358/1). The workshop was supported by a US Partnering grant from BBSRC (BB/G016208/1) to Cragg and a BBSRC/FAPESP grant to Bruce (BB/1018492/1). Watts was supported by Marie Curie FP7-RG 276948. Goodell acknowledges support from USDA Hatch Project S-1041 VA-136288. Distel acknowledges support from NSF Award IOS1442759 and NIH Award Number U19 TW008163. Beckham thanks the US Department of Energy Bioenergy Technologies Office for funding. We appreciated the hospitality of the Linnean Society in allowing us to meet in inspirational surroundings under portraits of Linnaeus, Darwin and Wallace.This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.cbpa.2015.10.01
    corecore