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ABSTRACT: Neonicotinoids are currently licensed for use in 120
countries, making accurate nontarget species sensitivity predictions
critical. Unfortunately, such predictions are fraught with un-
certainty, as sensitivity is extrapolated from only a few test species
and neonicotinoid sensitivities can differ greatly between closely
related taxa. Combining classical toxicology with de novo
toxicogenomics could greatly improve sensitivity predictions and
identify unexpectedly susceptible species. We show that there is a
>30-fold differential species sensitivity (DSS) for the neonicotinoid
imidacloprid between five earthworm species, a critical nontarget
taxon. This variation could not be explained by differential
toxicokinetics. Furthermore, comparing key motif expression in
subunit genes of the classical nicotinic acetylcholine receptor
(nAChR) target predicts only minor differences in the ligand
binding domains (LBDs). In contrast, predicted dissimilarities in LBDs do occur in the highly expressed but nonclassical targets,
acetylcholine binding proteins (AChBPs). Critically, the predicted AChBP divergence is capable of explaining DSS. We propose that
high expression levels of putative nonsynaptic AChBPs with high imidacloprid affinities reduce imidacloprid binding to critical
nAChRs involved in vital synaptic neurotransmission. This study provides a clear example of how pragmatic interrogation of key
motif expression in complex multisubunit receptors can predict observed DSS, thereby informing sensitivity predictions for essential
nontarget species.

KEYWORDS: neonicotinoid, toxicokinetics, toxicodynamics, nicotinic acetylcholine receptor

■ INTRODUCTION

Limiting the adverse effects of the >2 M tonnes/annum of
pesticides used globally is of paramount importance for the
preservation of ecosystem goods and services. Consequently,
there is a critical need to better understand and predict the
ecological impacts of pesticides on ecologically important
nontarget species. Understanding what drives nontarget
species sensitivity to agrochemicals can help to identify the
species most at risk.1

Neonicotinoids are a class of widely used insecticides that
are licensed in 120 countries. Neonicotinoid compounds are
known to impact on biomes throughout the globe, including
through effects on pollinators,2−4 freshwater communities,5

and soil organisms.6 Differential species sensitivity (DSS) for
individual neonicotinoids can range over 7 orders of
magnitude.7 Differential species sensitivity to pesticides (and
other chemicals) is dependent on both toxicokinetic (TK)8

and toxicodynamic (TD) traits,9 with the former determining
the absorption, distribution, metabolism, and excretion

(ADME) and the latter including chemical target receptor
orthologue diversity,10 ligand binding domain characteristics,
and the subsequent downstream adverse outcome pathway
responses.11,12 The potential effects of pesticides on critical
nontarget organisms are often difficult to predict because TK
and TD traits (e.g., receptor compliment) are often very poorly
described.
Earthworms represent a critical nontarget group that have

wide-ranging impacts on soil-based processes and provide vital
soil ecosystem services.13 By combining classical toxicology
with de novo toxicogenomics, we here explain the basis for DSS
for the neonicotinoid imidacloprid, the most widely used

Received: July 31, 2020
Revised: December 3, 2020
Accepted: December 9, 2020
Published: February 9, 2021

Articlepubs.acs.org/est

© 2021 The Authors. Published by
American Chemical Society

3059
https://dx.doi.org/10.1021/acs.est.0c05125
Environ. Sci. Technol. 2021, 55, 3059−3069

Made available through a Creative Commons CC-BY License

D
ow

nl
oa

de
d 

vi
a 

C
T

R
 F

O
R

 E
C

O
L

O
G

Y
 &

 H
Y

D
R

O
L

O
G

Y
 o

n 
M

ar
ch

 8
, 2

02
1 

at
 1

0:
40

:3
8 

(U
T

C
).

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Stephen+Short"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Alex+Robinson"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Elma+Lahive"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Amaia+Green+Etxabe"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Szabolcs+Herna%CC%81di"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="M.+Glo%CC%81ria+Pereira"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Peter+Kille"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Peter+Kille"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="David+J.+Spurgeon"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.est.0c05125&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.0c05125?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.0c05125?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.0c05125?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.0c05125?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.0c05125?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/esthag/55/5?ref=pdf
https://pubs.acs.org/toc/esthag/55/5?ref=pdf
https://pubs.acs.org/toc/esthag/55/5?ref=pdf
https://pubs.acs.org/toc/esthag/55/5?ref=pdf
pubs.acs.org/est?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://dx.doi.org/10.1021/acs.est.0c05125?ref=pdf
https://pubs.acs.org/est?ref=pdf
https://pubs.acs.org/est?ref=pdf
http://pubs.acs.org/page/policy/authorchoice/index.html
https://creativecommons.org/licenses/by/4.0/


insecticide worldwide, both between earthworms and a
sequenced insect of known sensitivity (Drosophila melanogast-
er) and also between five earthworm species tested here. As
well as including the standard test species (Eisenia fetida), the
chosen earthworm species represent a wide phylogenetic range
(i.e., Lumbricidae and Megascolecidae) and multiple ecotypes
(i.e., epigeic and endogeic species). Previous to our work, the
toxicity of neonicotinoids to earthworms has mainly been
assessed in Eisenia fetida. However, studies conducted with
insecticides have shown that earthworms can vary in
sensitivity, both compared to other soil taxa14 and also
between species.15 Hence, the species in this taxon provide an
ideal case study in which to assess the completeness and
breadth of our combined approach for attributing a
mechanistic cause to the observation of interspecies difference
in sensitivity.
Species-specific sensitivity relating to TD (e.g., receptor)

traits can be predicted by receptor analyses that compare
primary amino acid sequences, functional domains, and
individual residues of target receptors to assess the critical
interactions with chemicals and ligand binding domains
(LBD).16 Imidacloprid causes dysfunction by acting as a
partial agonist of the nicotinic acetylcholine receptor
(nAChR).17 Given that considerable electrophysiological and
structural analyses have already identified specific loop
sequences and residues critical to nAChR−imidacloprid
binding,18−20 nAChRs should be particularly amenable to a
toxicogenomic predictive approach. Indeed, residue changes
identified using electrophysiology that reduce nAChR
responses to imidacloprid have been associated with lower
imidacloprid sensitivity in ticks and aphids.21,22 Therefore,
applying a predictive toxicogenomic approach to nAChRs that
accounts for amino acid identity and expression in loop
residues critical to LBD−imidacloprid interactions has great
potential to improve neonicotinoid sensitivity predictions.

■ MATERIALS AND METHODS
Study Species and Genotyping. Five earthworm species

(four Lumbricidae, Eisenia fetida, Lumbricus rubellus, Aporrec-
todea caliginosa, and Dendrobaena octaedra; one Megascoleci-
dae, Amynthas gracilis) were tested for imidacloprid sensitivity.
E. fetida were taken from an in-house culture, while the
remaining species were collected from the field populations in
the UK (L. rubellus, A. caliginosa, and D. octaedra) or Saõ
Miguel Island, The Azores (A. gracilis) (see the Supporting
Information (SI) methods section for site details). Earthworm
morphospecies are known to comprise distinct clades for E.
fetida,23 L. rubellus,24,25 A. caliginosa,26 and A. gracilis27 but not
D. octaedra.28 For this reason, the mitochondrial cytochrome
oxidase 1 (CO1) locus was sequenced for 18−20 individuals to
assess the population genetic homogeneity. All animals used
for transcriptome expression analysis (see below) were also
CO1 genotyped (see the SI Methods).
Earthworm Toxicity Testing. The full test method is

detailed in the SI Methods. Briefly, tests with the five
earthworm species were conducted in a natural soil (Kettering
loam) amended with 3% w/w organic matter (composted bark
from LBS Horticultural, Colne, UK). The soil was described in
more detail by Robinson et al.29 Earthworm numbers per
replicate were modified (minimum five individuals per rep) on
the basis of their availability from collection and also to avoid
crowding effects.30 Imidacloprid was spiked as an aqueous
solution at seven concentrations (including a control) up to 10

or 30 mg/kg dry weight soil with four replicates per treatment.
The added pesticide was left for 24 h before the earthworms
were added. This preincubation time allowed for an initial
chemical binding to soil but avoided the potential for
substantial degradation. Spiked horse manure was supplied as
food. As the earthworm species differ in their temperature
preference, tests were conducted at 20 ± 2 °C for E. fetida and
A. gracilis and 13 ± 2 °C for A. caliginosa, L. rubellus, and D.
octaedra. These temperatures were selected on the basis of the
conditions used in culturing or annual median temperatures at
their field collection sites and were chosen to ensure optimal
cocoon production while limiting any background control
mortality (as can occur at higher temperatures in temperate
soil species31). Earthworm survival was recorded, the laid
cocoons were counted after 28 days exposure, and LC50 and
EC50-reproduction values were calculated in the DRC package
in R 1.2.1335.32

Imidacloprid Uptake and Distribution. At the end of
the test, earthworm tissue and a soil sample were collected for
imidacloprid determination. The resource constraints meant
that we could not analyze all samples, but instead we had to
adopt a targeted approach. For imidacloprid in soil, we
measured concentrations in 15% of samples from across the 28
day sampled soils. An analysis of these samples would provide
both confirmation of no gross errors in dosing stock solution
preparations (i.e., measured concentration within an order of
magnitude of nominal) and also an indication of imidacloprid
degradation. A general linear model (GLM) was conducted in
Minitab v18 with log value to assess the concentration and
temperature effects on the measured concentrations using
concentration and temperature as fixed factors.
Tissue imidacloprid concentrations were measured in the

tail samples of two earthworms from each replicate in all
treatments for L. rubellus to assess uptake over the
concentration range. To compare uptake between the species,
imidacloprid was measured in two individuals per replicate in
the 0 and 0.37 mg/kg treatments. As the toxicokinetics of
imidacloprid was not known, the earthworms were not
depurated as this takes 48 h, over which time a proportion
of the chemical could have been eliminated.33 Hence, the
measured concentrations contain both truly internalized
chemical and also gut content associated residues. Imidaclo-
prid measurements were conducted on the basis of the study
by Woodcock et al.2 by liquid chromatography−mass
spectrometry (LC−MS) (see the SI Methods). The
imidacloprid tissue concentrations between the species were
compared. The log transformed data were tested for normality
using a Shapiro−Wilk test before performing an one-way
analysis of variance (ANOVA) with Tukey’s post hoc test in
Minitab v18.
Toxicokinetic rates were assessed in time-series radiolabeled

imidacloprid uptake and elimination studies with the most
sensitive species A. gracilis, least sensitive L. rubellus, and the
standard test species E. fetida (second least sensitive). These
species were selected to provide comparisons of earthworms
with different and similar sensitivities. Exposures to 14C
imidacloprid were conducted in the same soil as the toxicity
bioassays with the labeled chemical at 0.0625 mg/kg
(approximately half of the lowest EC50-reproduction), giving
an activity of 481 kBq/kg (see the SI Methods). The activity
was measured after tissue homogenization in acetonitrile by
following Carter et al.34 Individual measurements for each
species were fitted without statistical transformation using a

Environmental Science & Technology pubs.acs.org/est Article

https://dx.doi.org/10.1021/acs.est.0c05125
Environ. Sci. Technol. 2021, 55, 3059−3069

3060

http://pubs.acs.org/doi/suppl/10.1021/acs.est.0c05125/suppl_file/es0c05125_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.0c05125/suppl_file/es0c05125_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.0c05125/suppl_file/es0c05125_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.0c05125/suppl_file/es0c05125_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.0c05125/suppl_file/es0c05125_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.0c05125/suppl_file/es0c05125_si_001.pdf
pubs.acs.org/est?ref=pdf
https://dx.doi.org/10.1021/acs.est.0c05125?ref=pdf


one compartment TK model to derived the uptake (k1) and
elimination (k2) rate constants (±SE) in GENSTAT.
Imidacloprid half-life in tissues (T1/2) and bioaccumulation
factors were derived from these k1 and k2 rates.
To assess the imidacloprid tissue distribution, separate

exposures were conducted for 35 individual L. rubellus, E.
fetida, and A. gracilis exposed to 0.0625 mg/kg 14C-
imidacloprid for 168 h. All earthworms were depurated for
24 h on wet filter paper before being dissected to obtain nerve
cord, seminal vesicle, and post clitellum body wall tissues for
scintillation counting.34 Samples were pooled to give five
replicates each with tissues from seven individuals (see the SI
Methods).
Animal Dissection, RNA Isolation, and Transcriptome

Production. Tissues were dissected from the same three
(CO1 genotyped) earthworms used for the TK study as pairs
showing different and similar sensitivities (L. rubellus, five
animals; A. gracilis, five animals; E. fetida, six animals) and
isolated RNA were prepared and indexed for paired-end
multiplexed sequencing (TruSeq Stranded mRNA Library
Prep Kit, Illumina, San Diego, California) before being
sequenced (150 bp paired-end) using various Illumina
sequencing platforms (see the SI Methods). Raw reads were
trimmed using Trimmomatic24 (v. 0.36)35 and assembled
using Trinity (v. 2.2.0).36 An assembly was created for each
species using all reads for all tissues in addition to single tissue
assemblies. The resulting species lists of contigs from both the
all tissue and single tissue assemblies were combined and
processed using EvidentialGene: tr2aacds, mRNA Transcript
Assembly Software (v. 2017.12.21)37 into the most biologically
useful “best” set of mRNA and classified into primary and
alternate transcripts.
Earthworm nAChR/AChBP Orthologue Identification.

Paired reads (L. rubellus 437 million, E. fetida 819 million, A.
gracilis 182 million, including ∼41 million L. rubellus nerve
cord, ∼ 66 million E. fetida nerve cord and ∼66 million A.
gracilis nerve cord) were mapped to the transcriptome
assembly (RSEM v. 1.3.0), and counts were normalized with
weighted trimmed mean of M-values (TMM) to calculate the
relative expression levels. Earthworm nAChRs and AChBPs
were determined using a Reciprocal Best Hit BLAST method38

and sequence alignments, trimming, and trees built using
Geneious (v. 9.1.8). Alignments against D. melanogaster
nAChR subunit sequences revealed earthworm sequences
containing all loops relevant for acetylcholine/imidacloprid
binding (such sequences were termed “full-length”).
nAChR/AChBP Interaction Loop Residue Expression.

The lists of full-length nAChR α, non-α, and AChBP subunits
were used to determine the expression of specific amino acid
residues in interaction loops critical to imidacloprid binding
(i.e., residues experimentally associated with differential
binding, EC50 or maximal response values). As some
earthworm populations are genetically heterologous and
some species present higher allelic variation, the transcriptome
assembly produces a different number of contig sequences for
any given gene or gene family (including nAChR α, non-α, and
AChBP subunits). This is an issue when comparing the
expression between species from genetically homogeneous
(e.g., Amynthas gracilis) with heterologous populations (e.g.,
Lumbricus rubellus). This is because sequencing reads map to a
single contig (uniquely mapping reads) and the expression of a
given gene will be split across a greater number of distinct
contigs in a species with a higher genetic variation. To allow

for species comparisons, we clustered all full-length contigs
into either nAChR α, non-α, and AChBP subunits and
summed the total normalized expression for each subunit type
in each species across each tissue, giving the total expression by
tissue for the three subunit types. This approach also allows for
comparisons in the expression proportions of specific residue
identities (in specific tissues) between species across the
subunit types (calculated as percentage of total tissue
expression).

Comparative Binding “Affinity” Scores for nAChR
and AChBP Subunit Residues. The expression proportions
for each residue (associated with binding) in each species was
used to create comparative “affinity” and “sensitivity” scores
(see the SI Results and Discussion for rules followed at each
binding site, full sequences in SI Data S1−S3, and detailed
residue quantifications in SI Data S4). Briefly, within a species,
the percentage expression (in nerve cord) of residues
experimentally associated with higher/lower imidacloprid
binding were divided to give a higher/lower binding fraction
at each site. For example, if a critical position is represented by
a range of nonpolar, polar, and acidic residues across all full-
length nAChR α subunits, existing information is used to
categorize the relationships of the various residues with
imidacloprid binding. That is, they are associated with a
higher binding or lower binding or, in cases where no
confident assignment is possible, were considered to have
neutral roles. In this example, if mutational experiments reveal
that the replacement of nonpolar or polar residues with acidic
residues reduces imidacloprid binding and vice versa
(indicated by altered imidacloprid concentrations activating
the receptor to half its maximal level), then nonpolar/polar and
acidic residues are grouped into higher and lower binding
categories, respectively, and their relative expression percen-
tages were used to produce the higher/lower binding fraction
for that position. Combining residue identities possessing
similar relationships to binding allows for the simultaneous
consideration of multiple residue identities at the same
position. The exact details of various decisions (and the
justifying literature) for each residue across all subunit types
are included in SI Data S4. Then, for the earthworm−
earthworm comparisons, the high/low fractions for each
residue in A. gracilis were then divided by the mean high/
low fractions for the two lumbricid species. Likewise, the
fractions for D. melanogaster were divided by the A. gracilis
values (in the D. melanogaster−A. gracilis comparison) and by
the mean high/low fractions for the two lumbricid species (in
the D. melanogaster−lumbricid comparison). These calcula-
tions gave a comparative affinity score for each site of interest,
where a score <1 = relatively greater proportion of high-affinity
residues in denominator species and >1 = relatively greater
proportion of high-affinity residues in numerator species. At
sites where there is no obvious higher/lower affinity relation-
ship between residues but the expression of a particular residue
is thought to enhance the imidacloprid binding (e.g., structural
analysis suggests tyrosine at a site promotes imidacloprid
ligand binding), the affinity score is produced directly by
dividing the nerve cord residue expression percentages (of
tyrosine in this case).
Earthworm nAChRs are assumed to be composed of a 3:2

ratio of α/non-α subunits (see the Supporting Information for
discussion and justification of this assumption). Such
pentamers are thought to contain three LBDs, two at the α/
non-α interfaces and one at the single α/α interface.39 This
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means residues within specific loops may not equally
contribute to ligand binding. Specifically, while binding-critical
residues in loops A, B, and C in α subunits are predicted to
contribute to all three LBDs, residues in loops G, D, E, and F
in α subunits contribute to the single α/α interface (one-third
of all LBDs), whereas loops D, E, and F in non-α subunits
contribute to both α/non-α interfaces (two-thirds of all
LBDs). To account for these differences, the affinity scores
were adjusted. Initially, the reciprocal was calculated (1/affinity
score) for scores predicting greater proportions of high-affinity
residues in any denominator group. Then, the scores for loops
G, D, E, and F (if a score was present) in α subunits were
adjusted, ([affinity score − 1] × 0.333), and loops D, E, and F
in non-α subunits, ([affinity score − 1] × 0.666). No
adjustment was made to scores for loops A, B, and C in
nAChR α subunits and all AChBP loops on the basis that they
contributed to all LBDs. The subsequent residue scores for
interacting loops were combined as follows: Loops associated
with multiple residue scores but with all scores indicating
higher affinity for either the denominator or numerator species,
[(sum residue affinity scores) + 1]. When residue scores for a
single loop gave a combination of both higher denominator
and numerator species scores, the following steps were taken:
first, sum scores for numerator species and denominator
species separately. The larger summed value reveals the overall
affinity direction for the whole loop (i.e., toward higher affinity
in the numerator or denominator species). Then, [(larger value
− smaller value) + 1]. For loops associated with only a single
score: ([residue affinity score] + 1). The log2 values of the
resulting loop scores were calculated and represented the final
loop affinity score.
Comparative Imidacloprid Sensitivity Scores for

nAChR and AChBP Subunit Residues. For nAChR
subunits, the affinity scores (prior to the log2 conversion) for
all loops in nAChR α and non-α subunits were combined. The
loop affinity scores suggesting a higher affinity in the
numerator species were summed, as were the loop affinity
scores predicting a higher affinity in the denominator species.
The category represented by the larger value was taken as the
overall sensitivity direction (i.e., higher sensitivity in the
numerator or denominator species). The smaller value was
then subtracted from the larger value and log2 converted to
give the overall comparative nAChR sensitivity score. The
process was completed for AChBP loops but with the
exception that the category (either numerator or denominator
species) represented by the smaller value was taken as the
overall sensitivity direction (on the basis that high binding to
an off-target protein reduces sensitivity). The expression of
AChBPs critical to the sensitivity score were validated using
reverse transcription polymerase chain reaction (RT-PCR)
(see the SI Methods).

■ RESULTS AND DISCUSSION

Comparative Sensitivity of Earthworm Species.
Imidacloprid measurements confirmed the exposure concen-
trations within an expected range, although indicating up to
35% biodegradation over 28 days (see Figure S1). GLM
analysis confirmed that the measured concentrations were
significantly dependent on nominal values (F = 352, P <
0.001). There was no significant effect of temperature (F =
0.01, p > 0.05) or any nominal value temperature interaction
(F = 0.23, p > 0.05) on the measured concentrations. This

indicates no temperature effects on imidacloprid fate (see
Figure S1) that could explain any observed DSS.
LC50s for imidacloprid in the five species varied by a factor

of >14.4 from the most sensitive A. gracilis to the least sensitive
L. rubellus and A. caliginosa (Figure 1A). The DSS determined

using EC50s for reproduction was broadly consistent with the
LC50 values, indicating DSS in the order A. gracilis > D.
octaedra > A. caliginosa > E. fetida > L. rubellus (Figure 1A).
Comparatively, A. gracilis was 31.7-fold more sensitive than L.
rubellus. Temperature can have a significant effect on
toxicity,40,41 including on imidacloprid in short-term bioassays
(although decreasing with exposure time).42 In this study,
however, the attribution of species difference to exposure
temperature is not supported. For example, the two species
tested at 20 °C (A. gracilis and E. fetida) were found to show a
high DSS, being the most sensitive and second least sensitive
species. Further, the order and 3-fold difference found here for
sensitivity for E. fetida and D. octaedra tested at 20 and 13 °C,
respectively, is consistent (indeed in a magnitude slightly less)
with the 5-fold difference found at the same test temperature
by Kreutzweiser et al.43 Hence, exposure temperature clearly
cannot explain DSS. We, therefore, looked for a physiological
cause.

Toxicokinetics. Imidacloprid in tissues of exposed L.
rubellus showed tissue/soil bioaccumulation factors of 1.6−2.7
based on nominal concentrations and 2.76−7.51 based on the
final measured soil concentrations. Bioaccumulation factors
were lower at the higher exposure concentrations (Figure S2).
When exposed at 0.37 mg/kg, the tissue concentrations varied
significantly (ANOVA F = 15,34, p < 0.001; Tukey’s test, P <
0.05) between species (4-fold between the lowest, A. gracilis,
and the highest, D. octaedra) (Figure 1B). The ranking of
imidacloprid accumulation and magnitude of species difference
did not correlate with the sensitivity. Indeed, the most sensitive
species, A. gracilis, showed the lowest tissue imidacloprid
followed by the least sensitive, L. rubellus (Figure 2A,B). There
was a pattern for higher tissue concentrations in smaller (e.g.,
D. octaedra) rather than larger (e.g., L. rubellus, A. gracilis)

Figure 1. Sensitivity and tissue accumulation of imidacloprid in five
earthworm species. (A) Toxicity expressed as the 28 day LC50 and
EC50-reproduction (both with 95% CIs) for imidacloprid (milligrams
per kilogram of soil) for five earthworm species derived from Probit
(LC50) and logistic (EC50) model fits. (B) Tissue concentrations of
imidacloprid in four replicates each with two individuals (when
available) of five earthworm species exposed at 0.37 mg/kg soil; letter
indicated difference between treatments (Tukey’s Test p < 0.05).
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earthworms (Figure 1B). This may be explained by the size-
related surface area to body mass ratio uptake limitation in the
larger species. From this data, we conclude that the DSS
cannot be explained by imidacloprid bioaccumulation factors
alone.
To investigate the attribution of DSS to TK rates, we

conducted 14C-imidacloprid uptake and elimination experi-
ments with the most sensitive species A. gracilis, the least
sensitive L. rubellus, and the standard test species E. fetida
(second least sensitive). The accumulation rates (k1)
determined from one compartment TK model fits varied 2.8-
fold (Figure 2A). The predicted elimination rates were low in
all species (k2 = 6 × 10−5 − 4.5 × 10−4 h−1, estimated half-lives
>1000 days all cases), resulting in near linear uptake and slow
loss (Figure 2A,B). Slow earthworm imidacloprid elimination
rates contrast with those for the teleost fish Oncorhynchus
mykissa half-life of 60−70 h44and amphipod Gammarus
pulexa half-life of 82 h.45 Earthworms (E. fetida) have
previously shown to have moderate to slow elimination of a
range of lipophilic organic compoundshalf-lives of 2−28
days46,47suggesting that earthworms possess a low bio-
transformation capacity for multiple organic chemicals,
including imidacloprid.
The pattern of comparatively high tissue accumulation of

imidacloprid by E. fetida and low accumulation by L. rubellus as
detected by LC−MS (Figure 1B) was confirmed by radio-
chemical analysis; however, the kinetic study places A. gracilis
closer to E. fetida than L. rubellus (Figure 2A,B). The difference
in TK traits indicated by the radiolabel and unlabeled LC−MS
measurements may provide indications of possible imidaclo-
prid metabolism in species. In L. rubellus, uptake is constrained
by the low assimilation rate, as confirmed by tissue
measurements. In A. gracilis, the assimilation rate is higher

but measurements indicate low parent compound concen-
trations. As the 14C-imidacloprid radiolabel is placed in the
stable (pyridyl-2,6) ring, this may suggest some degree of
metabolic biotransformation by A. gracilis with the radiolabel
retained as a radiolabeled metabolite. Such metabolism might
be expected to reduce sensitivity, which is demonstrably not
the case for A. gracilis. For E. fetida, a high assimilation rate
leads to high tissue concentrations, but this is not associated
with a high sensitivity. The tissue localization of 14C-
imidacloprid indicates higher concentrations in the putative
target nerve cord than in the body wall or seminal vesicle.
Nerve cord concentrations are higher in A. gracilis, but
concentrations in the lumbricids also differ (Figure 2C), which
is not consistent with their comparable sensitivities. From
these results, we conclude that neither TK dynamics or
distributions to critical nerve tissues can wholly explain
imidacloprid DSS. This conclusion is in agreement with
those of Van Den Berg et al.48 and Dalhof et al.,49 respectively,
for the organophosphate chlorpyrifos and pyrethroid cyper-
methrin. Both of these studies further recommended a greater
consideration of TD traits, which was done here through
receptor analysis.

Toxicodynamics through Receptor Analysis. We
investigated the potential contribution of divergent nAChRs
and AChBPs to DSS. This requires consideration of how to
convert the nAChR/AChBPs subunit gene sequence and
expression differences into sensitivity predictions. The nAChR
consists of α and non-α subunits combined into hetero-
pentamer and α subunit homopentamer conformations17

(Figure 3A,B), while AChBPs are homopentamers formed
from α-like subunits (Figure 3C).50 In nAChR hetropen-
tamers, imidacloprid is thought to bind at α/non-α subunit
interfaces, as well as the single α/α interface present in 3:2 α/

Figure 2. 14C-Imidacloprid toxicokinetic and tissue localization in two insensitive lumbricid and one sensitive megascolecid earthworm. (A) Uptake
and elimination rate constants (k1, k2 ± SE), imidacloprid half-life in tissues (T1/2), and bioaccumulation factors (BAF) from the one compartment
TK model fits for three earthworm species. (B) Uptake and elimination of 14C-labeled imidacloprid for three earthworm species exposed in soil at a
concentration of 0.0615 mg/kg soil for 336 h, followed by a 336 h elimination period in clean soil; the broken gray line indicates the start of the
elimination period, the circles are measured data points, and the solid line is a one-compartment TK model fit. (C) Tissue localization of 14C
imidacloprid in the body wall (BW), nerve cord (NC), and seminal vesicle (SV) of four individuals from three earthworm species exposed at
0.0615 mg/kg soil for 168 h.
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non-α ratio heteropentamers (Figure 3A).39 In heteropen-
tamers, each ligand binding domain (LBD) is composed of
several interacting loops: A, B, C, and G provided by the α-
subunit and D, E, and F present on the non-α subunit (Figure
3D). In nAChR or AChBP homopentamers, all interacting
loops are provided by the adjacent α-subunits (Figure 3D). As
non-α subunits lack the necessary loop C sequences,18 they
cannot form homopentamers and only create binding sites
when adjacent to α subunits with necessary loop sequences.
Electrophysiological analyses and structural studies have
identified residues in loop sequences critical to nAChR−
imidacloprid responses.18−20 Characterizing the expression of
residues across all nAChR subunits is needed to predict
functionality and, by extension, DSS.
We produced putative lists of nAChR/AChBP subunit

sequences from A. gracilis, L. rubellus, and E. fetida tran-
scriptomes by reciprocal best BLAST (short read libraries and
transcriptome shotgun assemblies deposited as Genbank
BioProject numbers: A. gracilis PRJNA608674, L. rubellus
PRJNA608704, E. fetida PRJNA608692, and in SI Data S1−
S3). This analysis produced 269, 126, and 130 contigs
corresponding to nAChR/AChBPs for L. rubellus, E. fetida,
and A. gracilis. From these lists, we identified for L. rubellus 94
(69:25 α/non-α subunit) full-length nAChR contigs, E. fetida
77 (58:19 α/non-α subunit), and A. gracilis 60 (48:12 α/non-α
subunit) full-length nAChR sequences. The potentially high
nAChR orthologue number from the transcriptome is
supported by draft genome analyses (not shown) and
represents an expanded nAChR subunit repertoire in earth-
worms relative to other groups (e.g., Caenorhabditis elegans 29,
humans 16, and insects 10−12).51,52 Like Drosophila
melanogaster, earthworm nAChR subunit expression is
predominantly in nerve tissues and suggests a ∼3:2 ratio of
α/non-α subunit expression (SI and Figure S3).

Reciprocal best BLAST identified 10, 11, and 10 AChBP
subunit sequences for L. rubellus, E. fetida, and A. gracilis, (after
manual collation to remove allelic variants). AChBPs have
been previously described only in molluscs,50,53 polychaetes,54

and spiders55−57 and have not to date been reported in insects.
AChBPs are homopentamers formed from α-like subunits
(Figure 3C) that share high amino acid homology with the
extracellular domains of nAChRs.53 Each AChBP possesses five
sites (Figure 3C) capable of binding acetylcholine58 and
imidacloprid59 but no functional transmembrane domain.53,57

The functional role of AChBPs is still unknown,57 but they are
hypothesized to function away from the synapse, perhaps in
nonsynaptic cholinergic communication.50 Our analyses
indicate that earthworms have an expanded (∼10 AChBP
subunit gene) repertoire compared to those of molluscs (1−
253,60) and spiders (<557). Like nAChRs, AChBP subunit
expression is nerve cord biased (SI and Figure S3). AChBPs
are highly expressed (∼21× greater than nAChR subunits, SI
and Figure S3), with the expression dominated by a few very
highly expressed orthologues. For these highly expressed
AChBPs, we validated the expression using PCR and found
high agreement with our RNASeq data (SI and Figure S4).
Further, the striking correlation between the total AChBP
subunit nerve cord expression and 14C-imidacloprid uptake in
each species nerve cord supports AChBP−imidacloprid
interaction (Figure 4). Thus, highly expressed AChBP
orthologues, in addition to nAChR targets, may play important
roles in mediating imidacloprid toxicity in earthworms.

Electrophysiological investigations of mutant nAChRs
exposed to imidacloprid reveal the influence of critical loop
residues on both the receptor peak current (Imax) and the
imidacloprid concentration necessary to activate the receptor
to the half maximal level (EC50 value). In theory, changes to
either property could influence neonicotinoid action.17

However, for imidacloprid, a high positive correlation has
been found between neurotoxic activity and both its nAChR
binding affinity and EC50 value,

61,62 but no such relationship
has been found for Imax.

62 Therefore, while residues altering
Imax were characterized (Figures S6−S8 and SI Data S4), our
predictions focused on residues shown either to change EC50
or be critical for imidacloprid binding.18 (Figure S5 and SI
Data S4). Residues at critical sites with uncertain properties
were assumed neutral for imidacloprid binding.

Figure 3. nAChRs and AChBPs in various pentamer conformations
and interaction loops contributing to ligand binding domains (LBDs).
(A) Schematic of nAChR heterompentamer with a 3:2 ratio of α/
non-α subunits (box shows the region expanded in D), with three
LBDs shown as orange circles. (B) Schematic of nAChR α subunit
homopentamer with five LBDs. (C) Schematic of AChBP
homopentamer formed of AChBP α-like subunits. (D) Enhanced
representation of boxed region in A, showing LBDs that form between
loops/residues located at α/non-α and α/α subunit interfaces. At α/
non-α LBDs, the α-subunit provides loops A, B, and C and the non-α
subunit provides D, E, and F. In α−α LBDs, loops D, E, and F are
provided by the equivalent regions of α-subunits (with a further loop,
G, potentially playing a role at these LBDs). The LBDs in
homopentamers, whether nAChR or AChBP, occur in a manner
similar to the α−α interface shown.

Figure 4. Relative levels of 14C-imidacloprid uptake and AChBP
expression in earthworm nerve cords.
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Using full-length contigs, the expression of critical loop
residues was determined (see the SI Methods and Results and
Discussion approach and detailed quantitative loop analyses).
Our analysis covered the α (SI and Figures S6 and S7) and
non-α subunits (SI and Figure S8) and all relevant critical
residues for each of the less sensitive earthworms L. rubellus
and E. fetida (collectively termed the lumbricids), the sensitive
earthworm A. gracilis, and the known highly sensitive insect D.
melanogaster63 using the published genome and gene
expression data for this species. Given their structural
homology to nAChRs,18,57 we also consider AChBPs as
potential off-target binding sites (SI and Figures S9 and S10).
For AChBPs, our focus was limited to residues affecting EC50,
as residues affecting Imax have no obvious relevance to AChBPs
as they are not functioning ion channels. The expression
characterization of both nAChRs and AChBPs reveals
variations in the expression of critical loop residues between
differentially sensitive species. To validate the extent of
expression stability at critical residues across multiple samples,
we compared expression patterns between the L. rubellus nerve
cord and closely related neural ganglia, finding an effectively
identical expression across nAChR and AChBP subunits
(Figure S11).
The relative expression of high and low imidacloprid binding

residues was used to quantitatively predict a logarithmic
affinity score for each interacting loop. A comparison of
Drosophila to lumbricids (Figure 5A) and A. gracilis (Figure
5B) suggests, with a single exception, that Drosophila expresses
a greater proportion of high-binding residues in nAChR
subunit loops, most strikingly for loops C and E in α and non-
α subunits (Figure 5A ,B). In contrast, the lumbricid to A.
gracilis comparison shows only relatively minor expression
differences in high- and low-binding residues across all loops
(Figure 5C). Further, even the small expression differences
seen are inconsistent and an affinity score in one loop is largely
nullified by differences in another (e.g., loops D and E in non-α
subunits). Unlike for the nAChRs, there are striking differences
in the expression of key loop residues in AChBPs between the
lumbricids and A. gracilis (Figure 5C). The lumbricids express
a greater proportion of AChBPs with high-binding residues,
with loops F and C presenting the most dramatic differences
(Figure 5C). This means that, while A. gracilis may express the
highest level of AChBP in the nerve cord, it is predicted to
have a weaker binding affinity for imidacloprid.
For nAChRs, it is reasonable to assume that a higher

imidacloprid affinity equates to a higher sensitivity,61,62

meaning that the calculated affinity score (created by summing
the comparative expression proportions of nAChR loop
residues with known effects on imidacloprid binding) equates
to a sensitivity score. Calculated scores suggest that differences
in nAChR residues between the three earthworm species and
Drosophila (Figure 6A,B) explain DSS between the two taxa.
Between the lumbricids and A. gracilis, nAChR residue
differences affecting affinity and, thereby, sensitivity appear
incapable of accounting for the >30× difference in
imidacloprid sensitivity (SI and Figure 6). Unlike nAChR,
AChBP do not play a critical role in synaptic transmission,
instead likely being expressed away from this critical target site
with only an ancillary role in synaptic function. It is, therefore,
reasonable to assume that a higher AChBP−imidacloprid
affinity may equate to a lower sensitivity, as a high affinity to
AChBPs will mitigate toxicity via off-target binding, which will
in turn reduce nAChR−imidacloprid to reduce nerve

Figure 5. Comparative imidacloprid logarithmic affinity-score
predictions for nAChR and AChBP subunits based on the expression
of variant residues that modulate imidacloprid binding. (A) D.
melanogaster versus lumbricid earthworms (L. rubellus and E. fetida)
predictive comparison across loops in nAChR subunit ligand binding
domains (LBDs). (B) D. melanogaster versus A. gracilis predictive
comparison across nAChR subunit LBD loops. (C) Lumbricid
earthworms versus A. gracilis predictive comparison across nAChR
and AChBP LBD loops.

Figure 6. Comparative imidacloprid sensitivity-score predictions
based on the affinity scores for nAChR and AChBP subunits. (A)
D. melanogaster versus lumbricid earthworms (L. rubellus and E.
fetida) sensitivity score on the basis of nAChR subunit comparisons.
(B) D. melanogaster versus A. gracilis sensitivity score on the basis of
nAChR subunit comparisons. (C) Lumbricid earthworms versus A.
gracilis on the basis of both nAChR and AChBP subunit comparisons.
Sensitivity scores assuming highly expressed AChBPs represent a less
critical target than nAChRs; the low-affinity AChBPs in A. gracilis are
predicted to offer less protection for the nAChR, resulting in a
predicted higher sensitivity for A. gracilis.
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excitation and resulting neurotoxicity. Therefore, for AChBPs,
the inverse of the summed affinity score represents a sensitivity
score and predicts a high sensitivity of A. gracilis relative to that
of the lumbricids (Figure 6C), consistent with our
observations of actual species sensitivity to imidacloprid
(Figure 1A).
Taken overall, the data suggests that nonsynaptic AChBPs

play a critical role in determining earthworm sensitivity to
imidacloprid. The high expression of AChBPs and the
correlation between AChBP expression and the relative 14C-
imidacloprid uptake suggest that these proteins dominate the
pool of potential imidacloprid targets in earthworms (Figure
S3 and Figure 4). We hypothesize that possessing a pool of
imidacloprid binding receptors associated with nonsynaptic
functionality protects the critical synaptic nAChR target. If
correct, this AChBP pool may, in part, contribute to the lower
sensitivity of earthworms relative to insects that lack AChBPs.
However, it is important to note that we predict the classic
nAChR target also contributes to the differential sensitivity
between the taxa (Figure 6), as the comparative affinity scores
across the nAChR subunit loops suggest Drosophila nAChRs
bind imidacloprid with a greater affinity than their earthworm
equivalents (Figure 5). In contrast, our predictions suggest that
differences in the classic nAChR target do not underlie the
differential sensitivity between earthworms (Figure 6), as the
earthworm species are predicted to possess nAChR repertoires
with effectively identical imidacloprid binding affinities (Figure
5). However, unlike the nAChRs, the differential sensitivity
between the earthworm species can be explained by the
predicted differential binding capacities of their highly
expressed AChBP pools. Specifically, the AChBPs in A. gracilis
are predicted to have a notably weaker binding affinity for
imidacloprid than that of the relatively insensitive lumbricids
(Figure 5), meaning that sensitivity is increased (Figure 6) as
imidacloprid in nerve tissues of A. gracilis can be more readily
given up to interact with the primary nAChR target to cause
neurotoxic effects.
The potential for stoichiometric binding of imidacloprid to

AChBPs to mitigate primary receptor binding, and as a result
toxicity, identified for earthworms could also be important
mechanisms for determining DSS in other nontarget taxa.
Arachnids also possess AChBPs.55,57 Comparative studies have
shown that the oribatid mites Oppia nitens has a low sensitivity
to imidacloprid compared to insect species,14 and neonicoti-
noids are also known to have a low efficacy against spider
mites.64 Further, an analogous off-target stoichiometric binding
mechanism is proposed to explain resistance development in
malarial mosquitos via increased expression of another
nontarget protein, the sensory appendage protein SAP2.65

Hence, off-target binding may be a common but, until now,
unrecognized driver of species DSS of relevance for de novo
sensitivity predictions.
Past approaches for predicting sensitivity have focused on

the separate roles of TK traits (e.g., internal biotransformation
rate)66,67 and TD-receptor traits (e.g., presence of known
target orthologues).10,68 Further, LaLone et al.9 have shown
that not only just orthologue presence but also the amino acid
composition at key motifs can influence DSS. These authors
proposed the SeqaPASS approach, which uses the orthologue
presence and motif and amino acid sequence information to
predict sensitivity. While it is reasonable to suppose that
species possessing known target orthologues that interact
strongly with a chemical ligand may be sensitive, our study

reveals the need for extended analyses, specifically the presence
and expression of off-target binding as a potential mechanism
for mitigating primary target site interactions. For many cases,
truly accurate DSS predictions will require the development of
tools capable of comparing and modeling complex, multi-
subunit, and target (and nontarget) receptor repertoires that
are expressed from large and divergent gene families like
nAChR subunits. In this paper, we see clear agreement
between the observed sensitivity and toxicogenomically
generated predictions. This reveals that our innovative but
pragmatic approach, exploiting the expression patterns of
critical residues in complex receptors, can predict the
sensitivity of critical nontarget taxon to environmental
toxicants.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.est.0c05125.

Discussions of earthworm toxicity testing, imidacloprid
uptake and distribution, earthworm genotyping, animal
dissection and RNA isolation, RT-PCR validation of
AChBP expression, assumptions about extrapolating
residue function from insects/vertebrates to earthworms,
nAChR α subunit and nAChR non-α subunit analyses,
summary of nAChR and AChBP interaction loop
expression differences, AChBP subunit analysis, and
off-target binding could mitigate toxicity, table of primer
sequences used, and figures of measured versus intended
nominal concentrations of imidacloprid, measured
imidacloprid in the tissues of L. rubellus exposed for
28 days at different soil concentrations, expression
patterns of nAChR and AChBP subunits, PCR validation
of the nerve cord expression of AChBPs, alignments of
N-terminus LBD sequences from Drosophila melanogast-
er nAChR subunits with earthworm nAChR and AChBP
subunits, relative expression proportions of residues in
loops A, B, and C of nAChR α subunits, relative
expression proportions of residues in loops G, D, E, and
F of nAChR α subunits, relative expression proportions
of residues in nAChR non-α subunits, relative expression
proportions of residues in AChBP subunits, and
comparison of expression proportions for residues
critical to differential imidacloprid binding in the neural
ganglion and nerve cord of L. rubellus (PDF)
Dataset of all L. rubellus α nAChR subunits found using
reciprocal best BLAST (PDF)
Dataset of all E. fetida α nAChR subunits found using
reciprocal best BLAST (PDF)
Dataset of all A. gracilis α nAChR subunits found using
reciprocal best BLAST (PDF)
Dataset of summary of all nAChR subunits and nAChBP
loop residue effects on imidacloprid Imax and EC50 values
(XLSX)

■ AUTHOR INFORMATION
Corresponding Author

David J. Spurgeon − UK Centre for Ecology & Hydrology,
Wallingford, Oxfordshire OX10 8BB, United Kingdom;
orcid.org/0000-0003-3264-8760; Email: dasp@

ceh.ac.uk

Environmental Science & Technology pubs.acs.org/est Article

https://dx.doi.org/10.1021/acs.est.0c05125
Environ. Sci. Technol. 2021, 55, 3059−3069

3066

http://pubs.acs.org/doi/suppl/10.1021/acs.est.0c05125/suppl_file/es0c05125_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.0c05125/suppl_file/es0c05125_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.est.0c05125?goto=supporting-info
http://pubs.acs.org/doi/suppl/10.1021/acs.est.0c05125/suppl_file/es0c05125_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.0c05125/suppl_file/es0c05125_si_002.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.0c05125/suppl_file/es0c05125_si_003.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.0c05125/suppl_file/es0c05125_si_004.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.0c05125/suppl_file/es0c05125_si_005.xlsx
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="David+J.+Spurgeon"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0003-3264-8760
http://orcid.org/0000-0003-3264-8760
mailto:dasp@ceh.ac.uk
mailto:dasp@ceh.ac.uk
pubs.acs.org/est?ref=pdf
https://dx.doi.org/10.1021/acs.est.0c05125?ref=pdf


Authors
Stephen Short − UK Centre for Ecology & Hydrology,
Wallingford, Oxfordshire OX10 8BB, United Kingdom;
Cardiff School of Biosciences, BIOSI 1, University of Cardiff,
Cardiff CF10 3TL, United Kingdom; orcid.org/0000-
0002-6753-933X

Alex Robinson − UK Centre for Ecology & Hydrology,
Wallingford, Oxfordshire OX10 8BB, United Kingdom

Elma Lahive − UK Centre for Ecology & Hydrology,
Wallingford, Oxfordshire OX10 8BB, United Kingdom

Amaia Green Etxabe − UK Centre for Ecology & Hydrology,
Wallingford, Oxfordshire OX10 8BB, United Kingdom
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