89,100 research outputs found

    Comments on the radio spectrum of HB 3

    Full text link
    It has recently been suggested that the radio spectrum of the Galactic supernova remnant HB 3 shows flattening at higher frequencies (above about 1 GHz). Here I review the radio spectrum of HB 3, noting the difficulties in deriving accurate flux densities for this remnant, particularly at high frequencies, due to the proximity of bright, thermal emission from W3 and its surroundings. A flux density for HB 3 at 2695 MHz is derived from Effelsberg survey data. The spectrum of HB 3 is well represented by a simple power-law spectrum from 22 to 2695 MHz, with a spectral index of 0.56 +/- 0.03. It is concluded that contamination with thermal emission from adjacent regions is the cause for the reported spectral flattening of HB 3.Comment: Accepted for publication by the Bulletin of the Astronomical Society of Indi

    Radio Images of 3C 58: Expansion and Motion of its Wisp

    Full text link
    New 1.4 GHz VLA observations of the pulsar-powered supernova remnant 3C 58 have resulted in the highest-quality radio images of this object to date. The images show filamentary structure over the body of the nebula. The present observations were combined with earlier ones from 1984 and 1991 to investigate the variability of the radio emission on a variety of time-scales. No significant changes are seen over a 110 day interval. In particular, the upper limit on the apparent projected velocity of the wisp is 0.05c. The expansion rate of the radio nebula was determined between 1984 and 2004, and is 0.014+/-0.003%/year, corresponding to a velocity of 630+/-70 km/s along the major axis. If 3C 58 is the remnant of SN 1181, it must have been strongly decelerated, which is unlikely given the absence of emission from the supernova shell. Alternatively, the low expansion speed and a number of other arguments suggest that 3C 58 may be several thousand years old and not be the remnant of SN 1181.Comment: 12 pages; accepted for publication in the Astrophysical Journa

    Analysis of aircraft spectrometer data with logarithmic residuals

    Get PDF
    Spectra from airborne systems must be analyzed in terms of their mineral-related absorption features. Methods for removing backgrounds and extracting these features one at a time from reflectance spectra are discussed. Methods for converting radiance spectra into a form similar to reflectance spectra so that the feature extraction procedures can be implemented on aircraft spectrometer data are also discussed

    Gravity as elasticity of spacetime: a paradigm to understand horizon thermodynamics and cosmological constant

    Full text link
    It is very likely that the quantum description of spacetime is quite different from what we perceive at large scales, l(G/c3)1/2l\gg (G\hbar/c^3)^{1/2}. The long wave length description of spacetime, based on Einstein's equations, is similar to the description of a continuum solid made of a large number of microscopic degrees of freedom. This paradigm provides a novel interpretation of coordinate transformations as deformations of "spacetime solid" and allows one to obtain Einstein's equations as a consistency condition in the long wavelength limit. The entropy contributed by the microscopic degrees of freedom reduces to a pure surface contribution when Einstein's equations are satisfied. The horizons arises as "defects" in the "spacetime solid" (in the sense of well defined singular points) and contributes an entropy which is one quarter of the horizon area. Finally, the response of the microstructure to vacuum energy leads to a near cancellation of the cosmological constant, leaving behind a tiny fluctuation which matches with the observed value.Comment: This essay received an ``honorable mention'' in the 2004 Essay Competition of the Gravity Research Foundation; accepted for publication in IJMP

    Radio Spectral Index and Expansion of 3C58

    Full text link
    We present new observations of the plerionic supernova remnant 3C58 with the VLA at 74 and 327 MHz. In addition, we re-reduced earlier observations at 1.4 and 4.9 GHz taken in 1973 and 1984. Comparing these various images, we find that: 1. the remnant has a flat and relatively uniform spectral index distribution, 2. any expansion of the remnant with time is significantly less than that expected for uniform, undecelerated expansion since the generally accepted explosion date in 1181 A.D., and 3. there is no evidence for a non-thermal synchrotron emission shell generated by a supernova shock wave, with any such emission having a surface brightness of <1 x 10^(-21) W / (m^2 Hz sr) at 327 MHz.Comment: 18 pages, 7 Figures, Latex, Accepted for publication in the Astrophysical Journa
    corecore