2,316 research outputs found

    The neuroanatomical organization and chemosensory response characteristics of the olfactory bulb in the sea lamprey (Petromyzon marinus)

    Get PDF
    Olfactory information is utilized for a variety of behaviours including feeding, migration and spawning. The olfactory bulb is the initial site of odour information processing in the central nervous system. The OB organizes this information along parallel processing pathways using topographic and temporal coding. In general, little is known about the neural substrate involved in transforming olfactory information into behavioural responses. In the sea lamprey ( Petromyzon marinus ) the responses of olfactory sensory neurons in the peripheral olfactory organ are transmitted along two distinct pathways to the medial and non-medial regions of the OB. The neural substrate for olfactory-locomotor transformation was recently identified in the sea lamprey, and demonstrated that projection neurons (PNs) in the medial OB region initiated movements by connecting to locomotor control centers. In contrast, PNs in the non-medial OB region projected to forebrain regions including the pallium. This thesis examines previously unknown anatomical and physiological characteristics of PNs in these medial and non-medial OB regions and relates the findings to these functionally distinct parallel output pathways. The medial PNs were anatomically isolated within the glomerular neuropil, exhibited varied somal shape, and had larger somata than non-medial PNs. Furthermore, the bulbar region containing these medial PNs responded to several different classes of odours with local field potentials (LFPs) being a mixture of transient and sustained responses and relatively short multiunit responses. The somata of non-medial PNs were below the glomerular neuropil and also exhibited varied shapes, but were smaller than the somata of the medial PNs. The LFP and multiunit recordings suggested that within the non-medial OB region, the dorsal territory responded differentially to lamprey sex pheromones and migratory pheromones while lateral recordings exhibited sustained LFP responses and long multiunit responses largely to basic amino acids. These findings suggest that neural organization in the medial OB may be optimized for the initiation of olfactory-locomotor movements in response to diverse odours, while the nonmedial regions exhibit odour specificity and may be optimized for other functional processes such as odour information integration

    The Neuroanatomical Organization of Projection Neurons Associated with Different Olfactory Bulb Pathways in the Sea Lamprey, Petromyzon marinus

    Get PDF
    Although there is abundant evidence for segregated processing in the olfactory system across vertebrate taxa, the spatial relationship between the second order projection neurons (PNs) of olfactory subsystems connecting sensory input to higher brain structures is less clear. In the sea lamprey, there is tight coupling between olfaction and locomotion via PNs extending to the posterior tuberculum from the medial region of the olfactory bulb. This medial region receives peripheral input predominantly from the accessory olfactory organ. However, the axons from olfactory sensory neurons residing in the main olfactory epithelium extend to non-medial regions of the olfactory bulb, and the non-medial bulbar PNs extend their axons to the lateral pallium. It is not known if the receptive fields of the PNs in the two output pathways overlap; nor has the morphology of these PNs been investigated. In this study, retrograde labelling was utilized to investigate the PNs belonging to medial and non-medial projections. The dendrites and somata of the medial PNs were confined to medial glomerular neuropil, and dendrites of non-medial PNs did not enter this territory. The cell bodies and dendrites of the non-medial PNs were predominantly located below the glomeruli (frequently deeper in the olfactory bulb). While PNs in both locations contained single or multiple primary dendrites, the somal size was greater for medial than for non-medial PNs. When considered with the evidence-to-date, this study shows different neuroanatomical organization for medial olfactory bulb PNs extending to locomotor control centers and non-medial PNs extending to the lateral pallium in this vertebrate

    Contributors to the December Issue/Notes

    Get PDF
    Notes by Warren A. Deahl, W. J. Rafferty, Timothy M. Green, Bernard F. Grainey, and Jerome Gold

    Contributors to the December Issue/Notes

    Get PDF
    Notes by Warren A. Deahl, W. J. Rafferty, Timothy M. Green, Bernard F. Grainey, and Jerome Gold

    Sensory Activation of Command Cells for Locomotion and Modulatory Mechanisms: Lessons from Lampreys

    Get PDF
    Sensorimotor transformation is one of the most fundamental and ubiquitous functions of the central nervous system. Although the general organization of the locomotor neural circuitry is relatively well understood, less is known about its activation by sensory inputs and its modulation. Utilizing the lamprey model, a detailed understanding of sensorimotor integration in vertebrates is emerging. In this article, we explore how the vertebrate central nervous system integrates sensory signals to generate motor behavior by examining the pathways and neural mechanisms involved in the transformation of cutaneous and olfactory inputs into motor output in the lamprey. We then review how 5-HT acts on these systems by modulating both sensory inputs and motor output. A comprehensive review of this fundamental topic should provide a useful framework in the fields of motor control, sensorimotor integration and neuromodulation

    Shocks and Thermal Conduction Fronts in Retracting Reconnected Flux Tubes

    Full text link
    We present a model for plasma heating produced by time-dependent, spatially localized reconnection within a flare current sheet separating skewed magnetic fields. The reconnection creates flux tubes of new connectivity which subsequently retract at Alfv\'enic speeds from the reconnection site. Heating occurs in gas-dynamic shocks which develop inside these tubes. Here we present generalized thin flux tube equations for the dynamics of reconnected flux tubes, including pressure-driven parallel dynamics as well as temperature dependent, anisotropic viscosity and thermal conductivity. The evolution of tubes embedded in a uniform, skewed magnetic field, following reconnection in a patch, is studied through numerical solutions of these equations, for solar coronal conditions. Even though viscosity and thermal conductivity are negligible in the quiet solar corona, the strong gas-dynamic shocks generated by compressing plasma inside reconnected flux tubes generate large velocity and temperature gradients along the tube, rendering the diffusive processes dominant. They determine the thickness of the shock that evolves up to a steady-state value, although this condition may not be reached in the short times involved in a flare. For realistic solar coronal parameters, this steady-state shock thickness might be as long as the entire flux tube. For strong shocks at low Prandtl numbers, typical of the solar corona, the gas-dynamic shock consists of an isothermal sub-shock where all the compression and cooling occur, preceded by a thermal front where the temperature increases and most of the heating occurs. We estimate the length of each of these sub-regions and the speed of their propagation.Comment: 39 pages (AASTeX: 29 pages of text, 10 figures), accepted for publication in the Astrophysical Journa

    Odorant organization in the olfactory bulb of the sea lamprey

    Get PDF
    Skip to Next Section Olfactory sensory neurons innervate the olfactory bulb, where responses to different odorants generate a chemotopic map of increased neural activity within different bulbar regions. In this study, insight into the basal pattern of neural organization of the vertebrate olfactory bulb was gained by investigating the lamprey. Retrograde labelling established that lateral and dorsal bulbar territories receive the axons of sensory neurons broadly distributed in the main olfactory epithelium and that the medial region receives sensory neuron input only from neurons projecting from the accessory olfactory organ. The response duration for local field potential recordings was similar in the lateral and dorsal regions, and both were longer than medial responses. All three regions responded to amino acid odorants. The dorsal and medial regions, but not the lateral region, responded to steroids. These findings show evidence for olfactory streams in the sea lamprey olfactory bulb: the lateral region responds to amino acids from sensory input in the main olfactory epithelium, the dorsal region responds to steroids (taurocholic acid and pheromones) and to amino acids from sensory input in the main olfactory epithelium, and the medial bulbar region responds to amino acids and steroids stimulating the accessory olfactory organ. These findings indicate that olfactory subsystems are present at the base of vertebrate evolution and that regionality in the lamprey olfactory bulb has some aspects previously seen in other vertebrate species

    Odorant organization in the olfactory bulb of the sea lamprey

    Get PDF
    Skip to Next Section Olfactory sensory neurons innervate the olfactory bulb, where responses to different odorants generate a chemotopic map of increased neural activity within different bulbar regions. In this study, insight into the basal pattern of neural organization of the vertebrate olfactory bulb was gained by investigating the lamprey. Retrograde labelling established that lateral and dorsal bulbar territories receive the axons of sensory neurons broadly distributed in the main olfactory epithelium and that the medial region receives sensory neuron input only from neurons projecting from the accessory olfactory organ. The response duration for local field potential recordings was similar in the lateral and dorsal regions, and both were longer than medial responses. All three regions responded to amino acid odorants. The dorsal and medial regions, but not the lateral region, responded to steroids. These findings show evidence for olfactory streams in the sea lamprey olfactory bulb: the lateral region responds to amino acids from sensory input in the main olfactory epithelium, the dorsal region responds to steroids (taurocholic acid and pheromones) and to amino acids from sensory input in the main olfactory epithelium, and the medial bulbar region responds to amino acids and steroids stimulating the accessory olfactory organ. These findings indicate that olfactory subsystems are present at the base of vertebrate evolution and that regionality in the lamprey olfactory bulb has some aspects previously seen in other vertebrate species

    Tobacco use by youth: a surveillance report from the Global Youth Tobacco Survey project

    Get PDF
    The Global Youth Tobacco Survey (GYTS) project was developed by the World Health Organization and the US Centers for Disease Control and Prevention to track tobacco use among youth in countries across the world, using a common methodology and core questionnaire. The GYTS is school based and employs a two-stage sample design to produce representative data on smoking among students aged 13–15 years. The first stage consists of a probabilistic selection of schools, and the second consists of a random selection of classes from the participating schools. All students in the selected classes are eligible for the survey. In 1999, the GYTS was conducted in 13 countries and is currently in progress in over 30 countries. This report describes data from 12 countries: Barbados, China, Costa Rica, Fiji, Jordan, Poland, the Russian Federation (Moscow), South Africa, Sri Lanka, Ukraine (Kiev), Venezuela, and Zimbabwe. The findings show that tobacco use in the surveyed age group ranged from a high of 33% to a low of 10%. While the majority of current smokers wanted to stop smoking, very few were able to attend a cessation programme. In most countries the majority of young people reported seeing advertisements for cigarettes in media outlets, but anti-tobacco advertising was rare. The majority of young people reported being taught in school about the dangers of smoking. Environmental tobacco smoke exposure was very high in all countries. These results show that the GYTS surveillance system is enhancing the capacity of countries to design, implement, and evaluate tobacco prevention and control programmes

    Bostonia. Volume 4

    Full text link
    Founded in 1900, Bostonia magazine is Boston University's main alumni publication, which covers alumni and student life, as well as university activities, events, and programs
    • …
    corecore