4,417 research outputs found

    Smart Devices and Systems for Wearable Applications

    Get PDF
    Wearable technologies need a smooth and unobtrusive integration of electronics and smart materials into textiles. The integration of sensors, actuators and computing technologies able to sense, react and adapt to external stimuli, is the expression of a new generation of wearable devices. The vision of wearable computing describes a system made by embedded, low power and wireless electronics coupled with smart and reliable sensors - as an integrated part of textile structure or directly in contact with the human body. Therefore, such system must maintain its sensing capabilities under the demand of normal clothing or textile substrate, which can impose severe mechanical deformation to the underlying garment/substrate. The objective of this thesis is to introduce a novel technological contribution for the next generation of wearable devices adopting a multidisciplinary approach in which knowledge of circuit design with Ultra-Wide Band and Bluetooth Low Energy technology, realization of smart piezoresistive / piezocapacitive and electro-active material, electro-mechanical characterization, design of read-out circuits and system integration find a fundamental and necessary synergy. The context and the results presented in this thesis follow an “applications driven” method in terms of wearable technology. A proof of concept has been designed and developed for each addressed issue. The solutions proposed are aimed to demonstrate the integration of a touch/pressure sensor into a fabric for space debris detection (CApture DEorbiting Target project), the effectiveness of the Ultra-Wide Band technology as an ultra-low power data transmission option compared with well known Bluetooth (IR-UWB data transmission project) and to solve issues concerning human proximity estimation (IR-UWB Face-to-Face Interaction and Proximity Sensor), wearable actuator for medical applications (EAPtics project) and aerospace physiology countermeasure (Gravity Loading Countermeasure Skinsuit project)

    Tentative Evidence for Relativistic Electrons Generated by the Jet of the Young Sun-like Star DG Tau

    Full text link
    Synchrotron emission has recently been detected in the jet of a massive protostar, providing further evidence that certain jet formation characteristics for young stars are similar to those found for highly relativistic jets from AGN. We present data at 325 and 610 MHz taken with the GMRT of the young, low-mass star DG Tau, an analog of the Sun soon after its birth. This is the first investigation of a low-mass YSO at at such low frequencies. We detect emission with a synchrotron spectral index in the proximity of the DG Tau jet and interpret this emission as a prominent bow shock associated with this outflow. This result provides tentative evidence for the acceleration of particles to relativistic energies due to the shock impact of this otherwise very low-power jet against the ambient medium. We calculate the equipartition magnetic field strength (0.11 mG) and particle energy (4x10^40 erg), which are the minimum requirements to account for the synchrotron emission of the DG Tau bow shock. These results suggest the possibility of low energy cosmic rays being generated by young Sun-like stars.Comment: 19 pages, 2 figures, accepted for publication in ApJ Letter

    Invisible design: exploring insights and ideas through ambiguous film scenarios

    Get PDF
    Invisible Design is a technique for generating insights and ideas with workshop participants in the early stages of concept development. It involves the creation of ambiguous films in which characters discuss a technology that is not directly shown. The technique builds on previous work in HCI on scenarios, persona, theatre, film and ambiguity. The Invisible Design approach is illustrated with three examples from unrelated projects; Biometric Daemon, Panini and Smart Money. The paper presents a qualitative analysis of data from a series of workshops where these Invisible Designs were discussed. The analysis outlines responses to the films in terms of; existing problems, concerns with imagined technologies and design speculation. It is argued that Invisible Design can help to create a space for critical and creative dialogue during participatory concept development

    Demography of male reproductive queues in cooperatively breeding superb fairy-wrens Malurus cyaneus

    Get PDF
    1. Subordinate helpers in cooperative societies may gain both immediate and future benefits, including paternity and territorial inheritance. However, if such opportunities correlate with rank in the queue, it is unclear why such queues should be stable

    She is author, with David Hall, of Practical Social Research (Macmillan, 1996) and Evaluation and Social Research: Introducing Small-Scale Practice

    Get PDF
    Abstract Student volunteering is currently being promoted through the Higher Education Contributor details David Hall is a Senior Lecturer in Applied Sociology and teaches and researches in the area of applied social research, volunteering and the voluntary sector, and learning and teaching in sociology. Together with Irene Hall, he is active in community-based learning and is programme director of the M.Sc. in Applied Social and Community Research. He is a partner in two European Framework 5 research programmes on science shops and university-community partnerships for knowledge transfer, and is the Chair of Interchange, the Liverpool science shop equivalent. David Hall, University of Liverpool, Department of Sociology, Social Policy and Social Work Studies, Bedford Street South, Liverpool L69 7ZA Irene Hall is a Senior Lecturer in Sociology and also teaches and researches in applied social research, community and the voluntary sector. She was programme director of the HEFCE funded CoBaLT project in community-based learning, and is a partner in a European Framework 5 research programme on science shops and university-community partnerships. She is author, with David Hall, of Practical Social Research (Macmillan, 1996) Pat Green is a Principal Lecturer at Wolverhampton University, where she has taught Women's Studies for many years, and has published on the gendered experience of mature students in higher education. She has been active in curriculum development through projects with voluntary and community groups, and has recently been appointed the manager of the HEACF programme for coordinating volunteering opportunities at Wolverhampton University

    Earth-vertical motion perception assessment using an elevator: a feasibility study

    Full text link
    A feasible, inexpensive, rapid, and easy-to-use method to measure vestibular vertical movement perception is needed to assess the sacculus-mediated low-frequency otolith function of dizzy patients. To evaluate the feasibility of reaction time assessment in response to vertical motion induced by an elevator in healthy young individuals. We recorded linear acceleration/deceleration reaction times (LA-RT/LD-RT) of 20 healthy (13 female) subjects (mean age: 22 years ± 1 SD) as a measure of vertical vestibular motion perception. LA-RT/LD-RT were defined as the time elapsed from the start of elevator acceleration or deceleration to the time at which subjects in a sitting position indicated perceiving a change in velocity by pushing a button with their thumb. The light reaction time was measured as a reference. All 20 subjects tolerated the assessment with repeated elevator rides and reported no adverse events. Over all experiments, one upward and four downward rides had to be excluded for technical reasons (2.5%). The fraction of premature button presses varied among the four conditions, possibly related to elevator vibration (upward rides: LA-RT-up 66%, LD-RT-up 0%; downward rides: LA-RT-down 12%, LD-RT-down 4%). Thus LD-RT-up yielded the most robust results. The reaction time to earth-vertical deceleration elicited by an elevator provides a consistent indicator of linear vestibular motion perception in healthy humans. The testing procedure is inexpensive and easy to use. Deceleration on upward rides yielded the most robust measurements
    corecore