40 research outputs found

    Heavy-Fermion Formation at the Metal-to-Insulator Transition in Gd1x_{1-x}Srx_xTiO3_3

    Full text link
    The perovskite-like transition-metal oxide Gd1x_{1-x}Srx_xTiO3_3 is investigated by measurements of resistivity, specific-heat, and electron paramagnetic resonance (EPR). Approaching the metal-to-insulator transition from the metallic regime (x0.2x \geq 0.2), the Sommerfeld coefficient γ\gamma of the specific heat becomes strongly enhanced and the resistivity increases quadratically at low temperatures, which both are fingerprints of strong electronic correlations. The temperature dependence of the dynamic susceptibility, as determined from the Gd3+^{3+}-EPR linewidth, signals the importance of strong spin fluctuations, as observed in heavy-fermion compounds.Comment: 4pages, 3 figure

    Crystal and magnetic structure of LaTiO3 : evidence for non-degenerate t2gt_{2g}-orbitals

    Full text link
    The crystal and magnetic structure of LaTiO3 ~ has been studied by x-ray and neutron diffraction techniques using nearly stoichiometric samples. We find a strong structural anomaly near the antiferromagnetic ordering, TN_N=146 K. In addition, the octahedra in LaTiO3 exhibit an intrinsic distortion which implies a splitting of the t2g-levels. Our results indicate that LaTiO3 should be considered as a Jahn-Teller system where the structural distortion and the resulting level splitting are enhanced by the magnetic ordering.Comment: 4 pages 5 figure

    Enhanced magnetocaloric effect in frustrated magnets

    Full text link
    The magnetothermodynamics of strongly frustrated classical Heisenberg antiferromagnets on kagome, garnet, and pyrochlore lattices is examined. The field induced adiabatic temperature change (dT/dH)_S is significantly larger for such systems compared to ordinary non-frustrated magnets and also exceeds the cooling rate of an ideal paramagnet in a wide range of fields. An enhancement of the magnetocaloric effect is related to presence of a macroscopic number of soft modes in frustrated magnets below the saturation field. Theoretical predictions are confirmed with extensive Monte Carlo simulations.Comment: 7 page

    Geometric and disorder -- type magnetic frustration in ferrimagnetic "114" Ferrites: Role of diamagnetic Li+ and Zn2+ cation substitution

    Full text link
    The comparative study of the substitution of zinc and lithium for iron in the "114" ferrites, YBaFe4O7 and CaBaFe4O7, shows that these diamagnetic cations play a major role in tuning the competition between ferrimagnetism and magnetic frustration in these oxides. The substitution of Li or Zn for Fe in the cubic phase YBaFe4O7 leads to a structural transition to a hexagonal phase YBaFe4-xMxO7, for M = Li (0.30 < x < 0.75) and for M = Zn (0.40 < x < 1.50). It is seen that for low doping values i.e. x = 0.30 (for Li) and x = 0.40 (for Zn), these diamagnetic cations induce a strong ferrimagnetic component in the samples, in contrast to the spin glass behaviour of the cubic phase. In all the hexagonal phases, YBaFe4-xMxO7 and CaBaFe4-xMxO7 with M = Li and Zn, it is seen that in the low doping regime (x ~ 0.3 to 0.5), the competition between ferrimagnetism and 2 D magnetic frustration is dominated by the average valency of iron. In contrast, in the high doping regime (x ~ 1.5), the emergence of a spin glass is controlled by the high degree of cationic disorder, irrespective of the iron valency.Comment: 2 tables, 7 figure

    Bond order from disorder in the planar pyrochlore magnet

    Full text link
    We study magnetic order in the Heisenberg antiferromagnet on the checkerboard lattice, a two-dimensional version of the pyrochlore network with strong geometric frustration. By employing the semiclassical (1/S) expansion we find that quantum fluctuations of spins induce a long-range order that breaks the four-fold rotational symmetry of the lattice. The ordered phase is a valence-bond crystal. We discuss similarities and differences with the extreme quantum case S = 1/2 and find a useful phenomenology to describe the bond-ordered phases.Comment: Minor clarifications + reference to an informal introduction cond-mat/030809

    Bonding, Moment Formation, and Magnetic Interactions in Ca14MnBi11 and Ba14MnBi11

    Full text link
    The ``14-1-11'' phase compounds based on magnetic Mn ions and typified by Ca14MnBi11 and Ba14MnBi11 show unusual magnetic behavior, but the large number (104) of atoms in the primitive cell has precluded any previous full electronic structure study. Using an efficient, local orbital based method within the local spin density approximation to study the electronic structure, we find a gap between a bonding valence band complex and an antibonding conduction band continuum. The bonding bands lack one electron per formula unit of being filled, making them low carrier density p-type metals. The hole resides in the MnBi4 tetrahedral unit and partially compensates the high spin d^5 Mn moment, leaving a net spin near 4 \mu_B that is consistent with experiment. These manganites are composed of two disjoint but interpenetrating `jungle gym' networks of spin 4/2 MnBi4^{9-} units with ferromagnetic interactions within the same network, and weaker couplings between the networks whose sign and magnitude is sensitive to materials parameters. Ca14MnBi11 is calculated to be ferromagnetic as observed, while for Ba14MnBi11 (which is antiferromagnetic) the ferro- and antiferromagnetic states are calculated to be essentially degenerate. The band structure of the ferromagnetic states is very close to half metallic.Comment: 17 pages, containing 10 postscript figures and 5 tables. Two additional figures (Fig.8 and 11 of the paper) are provided in JPG format in separate files. Submitted to Phys. Rev. B on September 20th 200

    Frank H. Spedding award citation

    No full text

    Magnetic structures of LaTiO3 and CeTiO3

    No full text
    corecore