5 research outputs found

    Cathodo- and photoluminescence in Yb<sup>3+</sup>-Er<sup>3+</sup> co-doped PbF<sub>2</sub> nanoparticles

    No full text
    We have prepared and studied the PbF2:(Yb3+,Er3+) co-doped nanoparticles, with chemical formula (Yb-Er)xPb1-xF2+x, where x = 0.29, Yb3+/Er3+ = 6, and estimated the energy efficiency for their cathodoluminescence, mostly of Yb3+, and up-conversion photoluminescence of Er3+ to reach more than 0.5% and 20%, respectively, which may be the highest to date for rare-earth doped nanoparticles. Electron beam induced temperature rise in the nanoparticles has been estimated by measuring the ratio of green emission bands of Er3+. These high efficiencies are due to high doping level of nanoparticles and due to low phonon energy of the PbF2 host.<br/

    Crystal chemistry and selected physical properties of inorganic fluorides and oxide-fluorides

    No full text
    importance in the development of many new technologies, andare impacting various key points of modern life, that is, energyproduction and storage, microelectronics and photonics,catalysis, automotive, building, etc. Many research fields andapplications are indeed concerned by a better knowledge of therelationships occurring between the structure of suchcompounds and some pertinent physical properties. ThisReview deals with the structural chemistry of solid-stateinorganic fluorides and oxide-fluorides, mostly transitionmetal-based, including rare-earth elements. Such a Review hasnot been published for a long time.1 Articles that recentlyappeared on inorganic fluorinated compounds were mostlyfocused on material science characteristics: morphology, surfacefunctionalization, nanostructuration of the materials andapplications, rather than on the description of characteristicstructural features.2−5 Detailed reviews focused on rare earthbasedinorganic fluorides have also appeared some yearsago..
    corecore