507 research outputs found

    Exploring behavioral responses of motorists to risk-based charging mechanisms

    Full text link
    This paper reports the behavioral response of motorists in Australia to a variable-rate charging scheme designed to encourage safer driving practices and reduce exposure to crash risk, specifically kilometers driven, nighttime driving, and speeding. The study involved a 5-week before period of Global Positioning System monitoring to establish how motorists drove normally, followed by a 5-week after period of Global Positioning System monitoring in which charges were levied and changes assessed. Incentives were paid to motorists for the difference in the charges between the two 5-week periods. Vehicle kilometers traveled (VKT) was reduced by 10%, although the sample was evenly split into motorists with increasing VKT and those with decreasing VKT. The proportion of distance speeding fell by 4.7%; this finding, when coupled with decreases in VKT, implied a net reduction of more than 40% in kilometers spent speeding. Three-fourths of the participants reduced their speeding. Exit interviews with a cross section of participants highlighted the practical difficulties of reducing kilometers but (more encouragingly) reinforced the potential to reduce speedin

    Understanding the defect chemistry of alkali metal strontium silicate solid solutions: Insights from experiment and theory

    Get PDF
    Recent reports of remarkably high oxide ion conduction in a new family of strontium silicates have been challenged. It has recently been demonstrated that, in the nominally potassium substituted strontium germanium silicate material, the dominant charge carrier was not the oxygen ion, and furthermore that the material was not single phase (R. D. Bayliss et. al., Energy Environ. Sci., 2014, DOI: 10.1039/ c4ee00734d). In this work we re-investigate the sodium-doped strontium silicate material that was reported to exhibit the highest oxide ion conductivity in the solid solution, nominally Sr0.55Na0.45SiO2.775. The results show lower levels of total conductivity than previously reported and sub-micron elemental mapping demonstrates, in a similar manner to that reported for the Sr0.8K0.2Si0.5Ge0.5O2.9 composition, an inhomogeneous chemical distribution correlating with a multiphase material. It is also shown that the conductivity is not related to protonic mobility. A density functional theory computational approach provides a theoretical justification for these new results, related to the high energetic costs associated with oxygen vacancy formation

    Stellar encounters as the origin of distant solar system objects in highly eccentric orbits

    Full text link
    The discovery of Sedna places new constraints on the origin and evolution of our solar system. Here we investigate the possibility that a close encounter with another star produced the observed edge of the Kuiper belt, at roughly 50 AU, and the highly elliptical orbit of Sedna. We show that a passing star probably scattered Sedna from the Kuiper Belt into its observed orbit. The likelihood that a planet at 60-80 AU can be scattered into Sedna's orbit is roughly 50%; this estimate depends critically on the geometry of the flyby. Even more interesting, though, is the roughly 10% chance that Sedna was captured from the outer disk of the passing star. Most captures have very high inclination orbits; detection of these objects would confirm the presence of extrasolar planets in our own Solar System.Comment: 9 pages, 3 figure

    Down regulation of the high-affinity IgE receptor associated with successful treatment of chronic idiopathic urticaria with omalizumab

    Get PDF
    Chronic idiopathic urticaria is a condition that is often controllable with antihistamine therapy. However, some patients have disease burden that is difficult to manage, non-responsive to antihistamines and often requires immunosuppressive medications such as corticosteroids or cyclosporine. We present here a study that demonstrates the effectiveness of omalizumab in treating this condition and the temporal relationship between improvement and down regulation of the high affinity IgE receptor (FcεRI). For this, blood samples were obtained from a symptomatic patient before each treatment and processed for flow cytometric analysis of FcεRI levels on the surface of blood basophils. Down regulation of FcεRI was observed in association with significant clinical improvement and discontinuation of immunosuppressive medications

    Dusty Planetary Systems

    Full text link
    Extensive photometric stellar surveys show that many main sequence stars show emission at infrared and longer wavelengths that is in excess of the stellar photosphere; this emission is thought to arise from circumstellar dust. The presence of dust disks is confirmed by spatially resolved imaging at infrared to millimeter wavelengths (tracing the dust thermal emission), and at optical to near infrared wavelengths (tracing the dust scattered light). Because the expected lifetime of these dust particles is much shorter than the age of the stars (>10 Myr), it is inferred that this solid material not primordial, i.e. the remaining from the placental cloud of gas and dust where the star was born, but instead is replenished by dust-producing planetesimals. These planetesimals are analogous to the asteroids, comets and Kuiper Belt objects (KBOs) in our Solar system that produce the interplanetary dust that gives rise to the zodiacal light (tracing the inner component of the Solar system debris disk). The presence of these "debris disks" around stars with a wide range of masses, luminosities, and metallicities, with and without binary companions, is evidence that planetesimal formation is a robust process that can take place under a wide range of conditions. This chapter is divided in two parts. Part I discusses how the study of the Solar system debris disk and the study of debris disks around other stars can help us learn about the formation, evolution and diversity of planetary systems by shedding light on the frequency and timing of planetesimal formation, the location and physical properties of the planetesimals, the presence of long-period planets, and the dynamical and collisional evolution of the system. Part II reviews the physical processes that affect dust particles in the gas-free environment of a debris disk and their effect on the dust particle size and spatial distribution.Comment: 68 pages, 25 figures. To be published in "Solar and Planetary Systems" (P. Kalas and L. French, Eds.), Volume 3 of the series "Planets, Stars and Stellar Systems" (T.D. Oswalt, Editor-in-chief), Springer 201

    Dynamic clonal equilibrium and predetermined cancer risk in Barrett's oesophagus

    Get PDF
    abstract: Surveillance of Barrett’s oesophagus allows us to study the evolutionary dynamics of a human neoplasm over time. Here we use multicolour fluorescence in situ hybridization on brush cytology specimens, from two time points with a median interval of 37 months in 195 non-dysplastic Barrett's patients, and a third time point in a subset of 90 patients at a median interval of 36 months, to study clonal evolution at single-cell resolution. Baseline genetic diversity predicts progression and remains in a stable dynamic equilibrium over time. Clonal expansions are rare, being detected once every 36.8 patient years, and growing at an average rate of 1.58 cm[superscript 2] (95% CI: 0.09–4.06) per year, often involving the p16 locus. This suggests a lack of strong clonal selection in Barrett’s and that the malignant potential of ‘benign’ Barrett’s lesions is predetermined, with important implications for surveillance programs.The final version of this article, as published in Nature Communications, can be viewed online at: https://www.nature.com/articles/ncomms1215

    Debris Disks: Probing Planet Formation

    Full text link
    Debris disks are the dust disks found around ~20% of nearby main sequence stars in far-IR surveys. They can be considered as descendants of protoplanetary disks or components of planetary systems, providing valuable information on circumstellar disk evolution and the outcome of planet formation. The debris disk population can be explained by the steady collisional erosion of planetesimal belts; population models constrain where (10-100au) and in what quantity (>1Mearth) planetesimals (>10km in size) typically form in protoplanetary disks. Gas is now seen long into the debris disk phase. Some of this is secondary implying planetesimals have a Solar System comet-like composition, but some systems may retain primordial gas. Ongoing planet formation processes are invoked for some debris disks, such as the continued growth of dwarf planets in an unstirred disk, or the growth of terrestrial planets through giant impacts. Planets imprint structure on debris disks in many ways; images of gaps, clumps, warps, eccentricities and other disk asymmetries, are readily explained by planets at >>5au. Hot dust in the region planets are commonly found (<5au) is seen for a growing number of stars. This dust usually originates in an outer belt (e.g., from exocomets), although an asteroid belt or recent collision is sometimes inferred.Comment: Invited review, accepted for publication in the 'Handbook of Exoplanets', eds. H.J. Deeg and J.A. Belmonte, Springer (2018
    corecore