155 research outputs found

    Towards a self-collision aware teleoperation framework for compound robots

    Get PDF
    This work lays the foundations of a self-collision aware teleoperation framework for compound robots. The need of an haptic enabled system which guarantees self-collision and joint limits avoidance for complex robots is the main motivation behind this paper. The objective of the proposed system is to constrain the user to teleoperate a slave robot inside its safe workspace region through the application of force cues on the master side of the bilateral teleoperation system. A series of simulated experiments have been performed on the Kuka KMRiiwa mobile robot; however, due to its generality, the framework is prone to be easily extended to other robots. The experiments have shown the applicability of the proposed approach to ordinary teleoperation systems without altering their stability properties. The benefits introduced by this framework enable the user to safely teleoperate whichever complex robotic system without worrying about self-collision and joint limitations

    Robust and Efficient Sifting-Less Quantum Key Distribution Protocols

    Full text link
    We show that replacing the usual sifting step of the standard quantum-key-distribution protocol BB84 by a one-way reverse reconciliation procedure increases its robustness against photon-number-splitting (PNS) attacks to the level of the SARG04 protocol while keeping the raw key-rate of BB84. This protocol, which uses the same state and detection than BB84, is the m=4 member of a protocol-family using m polarization states which we introduce here. We show that the robustness of these protocols against PNS attacks increases exponentially with m, and that the effective keyrate of optimized weak coherent pulses decreases with the transmission T like T^{1+1/(m-2)}

    Enhancing airplane boarding procedure using vision based passenger classification

    Get PDF
    This paper presents the implementation of a new boarding strategy that exploits passenger and hand-luggage detection and classification to reduce the boarding time onto an airplane. A vision system has the main purpose of providing passengers data, in terms of agility coefficient and hand-luggage size to a seat assignment algorithm. The software is able to dynamically generate the passenger seat that reduces the overall boarding time while taking into account the current airplane boarding state. The motivation behind this work is to speed up of the passenger boarding using the proposed online procedure of seat assignment based on passenger and luggage classification. This method results in an enhancement of the boarding phase, in terms of both time and passenger experience. The main goal of this work is to demonstrate the usability of the proposed system in real conditions proving its performances in terms of reliability. Using a simple hardware and software setup, we performed several experiments recreating a gate entrance mock up and comparing the measurements with ground truth data to assess the reliability of the system

    Biomechanical analysis of the upper body during overhead industrial tasks using electromyography and motion capture integrated with digital human models

    Get PDF
    In this paper, we present a biomechanical analysis of the upper body, which includes upper-limb, neck and trunk, during the execution of overhead industrial tasks. The analysis is based on multiple performance metrics obtained from a biomechanical analysis of the worker during the execution of a specific task, i.e. an overhead drilling task, performed at different working heights. The analysis enables a full description of human movement and internal load state during the execution of the task, thought the evaluation of joint angles, joint torques and muscle activations. A digital human model is used to simulate and replicate the worker’s task in a virtual environment. The experiments were conduced in laboratory setting, where four subjects, with different anthropometric characteristics, have performed 48 drilling tasks in two different working heights defined as low configuration and middle configuration. The results of analysis have impact on providing the best configuration of the worker within the industrial workplace and/or providing guidelines for developing assistance devices which can reduce the physical overloading acting on the worker’s body

    A fast airplane boarding strategy using online seat assignment based on passenger classification

    Get PDF
    The minimization of the turnaround time, the duration which an aircraft must remain parked at the gate, is an important goal of airlines to increase their profitability. This work introduces a procedure to minimize of the turnaround time by speeding up the boarding time in passenger aircrafts. This is realized by allocating the seat numbers adaptively to passengers when they pass the boarding gate and not before. Using optical sensors, an agility measure is assigned to each person and also a measure to characterize the size of her/his hand-luggage. Based on these two values per passenger and taking into account additional constraints, like reserved seats and the belonging to a group, a novel seat allocation algorithm is introduced to minimize the boarding time. Extensive simulations show that a mean reduction of the boarding time with approximately 15% is achieved compared to existing boarding strategies. The costs of introducing the proposed procedure are negligible, while the savings of reducing the turnaround time are enormous, considering that the costs generated by inactive planes on an airport are estimated to be about 30 $ per minute

    Development of site-specific biomechanical indices for estimating injury risk in cycling

    Get PDF
    In this paper we present novel biomechanical indices for site-specific assessment of injury risk in cycling. The indices are built from a multifactorial analysis based on the kinematics and kinetics of the cyclist from the biomechanical side, and muscle excitations and muscle synergies from the neurophysiological side. The indices are specifics for three body regions (back, knee, ankle) which are strongly affected by overuse injuries in cycling. We use these indices for injury risks analysis of a recreational cyclist, who offered to participate in the experiments. The preliminary results are promising towards the use of such indices for planning and/or evaluating training schedule with the final goal of reducing non-traumatic injuries in cycling

    A preliminary approach for swimming performance analysis of FISDIR elite athletes with intellectual impairment using an inertial sensor

    Get PDF
    People with intellectual impairment show low performances in motor control, especially in complex movements. Performance analysis methods, based on wearable inertial sensor, are often used in typical developed swimmers but have never been used in swimmers with intellectual impairment, for whom the use of quantitative systems would be even more important. This paper presents a case study conducted on freestyle swimmers from the functional evaluation project of the Italian Sport Federation for athletes with Intellectual Impairment (FISDIR). The tests were conducted by five Italian elite swimmers with intellectual impairment using a structured experimental protocol which foresees an inertial sensor located on the wrist. Key freestyle temporal and kinematic parameters were assessed. A high-speed camera was used as a benchmark to validate the inertial-based parameters. The preliminary results indicate that the proposed inertial-based approach correlates over 90% with the performance indices obtained with the camera-based approach, and therefore it could represent a useful tool for monitoring and improving the training

    The effect of metabolic phenotype on sociability and social group size preference in a coral reef fish

    Get PDF
    Although individuals within social groups experience reduced predation risk and find food patches more consistently, there can be competition for food among groupmates. Individuals with a higher standard metabolic rate (SMR) may be less social, to prioritize food acquisition over defense, while a greater maximum metabolic rate (MMR) may modulate sociability through increased competitive ability. Therefore, in theory, individuals with a higher SMR may prefer smaller groups and those with greater MMR may prefer larger groups. We examined links among metabolic phenotype, sociability, and choice of group size in the redbelly yellowtail fusilier Caesio cuning. Individuals were exposed to three association tests: (a) a choice between two fish or zero fish; (b) a choice between five fish or zero fish; and (c) a choice between two fish and five fish. The first two tests quantified sociability while the third measured relative group size choice. Although there was no link between SMR and sociability, fish with a higher MMR were more social than those individuals with a lower MMR. While no correlation was found between MMR and group size choice, there was weak evidence that, if anything, individuals with a higher SMR preferred larger groups, contrary to our hypothesis. As C. cuning is an active fish that spends a large proportion of time operating above SMR, this result could suggest that the links between sociability and SMR may shift depending on a species’ routine behavior. Links between sociability and MMR may arise if competitive ability allows individuals to obtain resources within groups. Although metabolic traits had no significant influence on group size choice, variation in food availability or predation risk could alter the effects of metabolism on group size choice
    • …
    corecore