59 research outputs found

    Binding to DNA of the RNA-polymerase II C-terminal domain allows discrimination between Cdk7 and Cdk9 phosphorylation

    Get PDF
    The C-terminal domain (CTD) of RNA polymerase II regulates transcription through spatially and temporally coordinated events. Previous work had established that the CTD binds DNA but the significance of this interaction has not been determined. The present work shows that the CTD binds DNA in its unphosphorylated form, the form in which it is present in the pre-initiation complex. The CTD/DNA complex is recognized by and is phosphorylated by Cdk7 but not by Cdk9. Model-building studies indicate the structural mechanism underlying such specificity involves interaction of Cdk7 with DNA in the context of the CTD/DNA complex. The model has been tested by mutagenesis experiments. CTD dissociates from DNA following phosphorylation by Cdk7, allowing transcription initiation. The CTD then becomes accessible for further phosphorylation by Cdk9 that drives the transition to transcription elongation

    Identification of a BAZ2A Bromodomain Hit Compound by Fragment Joining

    Full text link
    The bromodomains of BAZ2A and BAZ2B (bromodomain adjacent to zinc finger domain proteins 2) are among the most hard to drug of the 61 human bromodomains. While little is known about the role of BAZ2B, there is strong evidence for the opportunity of targeting BAZ2A in various cancers. Here, a benzimidazole–triazole fragment that binds to the BAZ2A acetyl lysine pocket was identified by a molecular docking campaign and validated by competitive binding assays and X-ray crystallography. Another ligand was observed in close proximity by soaking experiments using the BAZ2A bromodomain preincubated with the benzimidazole–triazole fragment. The crystal structure of BAZ2A with the two ligands was employed to design a few benzimidazole–triazole derivatives with increased affinity. We also present the engineering of a BAZ2A bromodomain mutant for consistent, high-resolution crystallographic studies

    Screening Approaches for Targeting Ribonucleoprotein Complexes: A New Dimension for Drug Discovery.

    Get PDF
    RNA-binding proteins (RBPs) are pleiotropic factors that control the processing and functional compartmentalization of transcripts by binding primarily to mRNA untranslated regions (UTRs). The competitive and/or cooperative interplay between RBPs and an array of coding and noncoding RNAs (ncRNAs) determines the posttranscriptional control of gene expression, influencing protein production. Recently, a variety of well-recognized and noncanonical RBP domains have been revealed by modern system-wide analyses, underlying an evolving classification of ribonucleoproteins (RNPs) and their importance in governing physiological RNA metabolism. The possibility of targeting selected RNA-protein interactions with small molecules is now expanding the concept of protein "druggability," with new implications for medicinal chemistry and for a deeper characterization of the mechanism of action of bioactive compounds. Here, taking SF3B1, HuR, LIN28, and Musashi proteins as paradigmatic case studies, we review the strategies applied for targeting RBPs, with emphasis on the technological advancements to study protein-RNA interactions and on the requirements of appropriate validation strategies to parallel high-throughput screening (HTS) efforts

    Identification of a BAZ2A-Bromodomain Hit Compound by Fragment Growing

    Full text link
    BAZ2A is an epigenetic regulator affecting transcription of ribosomal RNA. It is overexpressed in aggressive and recurrent prostate cancer, promoting cellular migration. Its bromodomain is characterized by a shallow and difficult-to-drug pocket. Here, we describe a structure-based fragment-growing campaign for the identification of ligands of the BAZ2A bromodomain. By combining docking, competition binding assays, and protein crystallography, we have extensively explored the interactions of the ligands with the rim of the binding pocket, and in particular ionic interactions with the side chain of Glu1820, which is unique to BAZ2A. We present 23 high-resolution crystal structures of the holo BAZ2A bromodomain and analyze common bromodomain/ligand motifs and favorable intraligand interactions. Binding of some of the compounds is enantiospecific, with affinity in the low micromolar range. The most potent ligand has an equilibrium dissociation constant of 7 μM and a good selectivity over the paralog BAZ2B bromodomain

    Structural dissection of cyclin dependent kinases regulation and protein recognition properties.

    No full text
    Cyclin Dependent Kinases (CDKs) regulate the cell division cycle, apoptosis, transcription and differentiation in addition to functions in the nervous system. They are regulated by their cyclin partners and by a variety of additional protein effectors (inhibitors, kinases, phosphatases). Each CDK serves its function by means of specific protein recognition properties. These are also responsible for the differential regulation of CDKs/Cyclin couples involved in processes as different as cell cycle and transcription. The structural features determining general and specific properties for CDKs/Cyclin complexes are analyzed. They reside in an overall conserved architecture with divergent spots used by the complexes to present themselves to specific substrates or other protein effectors

    Cdks at the interface of cell cycle and and transcription regulation

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Structural and functional determinants of protein kinase CK2 alpha: facts and open questions

    No full text
    Ser/Thr protein kinase CK2 is involved in several fundamental processes that regulate the cell life, such as cell cycle progression, gene expression, cell growth, and differentiation and embryogenesis. In various cancers, CK2 shows a markedly elevated activity that has been associated with conditions that favor the onset of the tumor phenotype. This prompts to numerous studies aimed at the identification of compounds that are able to inhibit the catalytic activity of this oncogenic kinase, in particular, of ATP-competitive inhibitors. The many available crystal structures indicate that this enzyme owns some regions of remarkable flexibility which were associated to important functional properties. Of particular relevance is the flexibility, unique among protein kinases, of the hinge region and the following helix alpha D. This study attempts to unveil the structural bases of this characteristic of CK2. We also analyze some controversial issues concerning the functional interpretation of structural data on maize and human CK2 and try to recognize what is reasonably established and what is still unclear about this enzyme. This analysis can be useful also to outline some principles at the basis of the development of effective ATP-competitive CK2 inhibitors
    corecore