6,153 research outputs found

    Influence of voltmeter input impedance on quantum Hall effect measurements

    Full text link
    We report on the influence of voltmeters on measurements of the longitudinal resistance in the quantum Hall effect regime. We show that for typical input resistances for standard digital lock-in amplifiers the longitudinal resistance can show a non-zero minimum which might be mistaken for parallel conduction in the doping layer. In contrast to a real parallel conduction the effect disappears when either the current source and ground contact are swapped or the polarity of the B-field is changed. We discuss the influence of input capacitances and stray capacitances on the measurement. The data demonstrates the influence of the voltmeter input impedance on the longitudinal resistance measurement.Comment: 4 pages, 3 figures, 1 table Corrected capacitance from 400pF to 4n

    Thermal conductivity of InAs/GaSb superlattice

    Full text link
    The cross-plane thermal conductivity of a type II InAs/GaSb superlattice (T2SL) is measured from 13 K to 300 K using the 3{\omega} method. Thermal conductivity is reduced by up to 2 orders of magnitude relative to the GaSb bulk substrate. The low thermal conductivity of around 1-8 W/m\cdotK may serve as an advantage for thermoelectric applications at low temperatures, while presenting a challenge for T2SL quantum cascade lasers and high power light emitting diodes. We introduce a power-law approximation to model non-linearities in the thermal conductivity, resulting in increased or decreased peak temperature for negative or positive exponents, respectively.Comment: 4 pages, 3 figure

    Corner overgrowth: Bending a high mobility two-dimensional electron system by 90 degrees

    Full text link
    Introducing an epitaxial growth technique called corner overgrowth, we fabricate a quantum confinement structure consisting of a high-mobility GaAs/AlGaAs heterojunction overgrown on top of an ex-situ cleaved substrate corner. The resulting corner-junction quantum-well heterostructure effectively bends a two-dimensional electron system (2DES) at an atomically sharp 90o90^{\rm o} angle. The high-mobility 2DES demonstrates fractional quantum Hall effect on both facets. Lossless edge-channel conduction over the corner confirms a continuum of 2D electrons across the junction, consistent with Schroedinger-Poisson calculations of the electron distribution. This growth technique differs distinctly from cleaved-edge overgrowth and enables a complementary class of new embedded quantum heterostructures.Comment: 3 pages, 4 figures, latest version accepted to AP

    Novel metallic and insulating states at a bent quantum Hall junction

    Full text link
    A non-planar geometry for the quantum Hall (QH) effect is studied, whereby two quantum Hall (QH) systems are joined at a sharp right angle. When both facets are at equal filling factor nu the junction hosts a channel with non-quantized conductance, dependent on nu. The state is metallic at nu = 1/3, with conductance along the junction increasing as the temperature T drops. At nu = 1, 2 it is strongly insulating, and at nu = 3, 4 shows only weak T dependence. Upon applying a dc voltage bias along the junction, the differential conductance again shows three different behaviors. Hartree calculations of the dispersion at the junction illustrate possible explanations, and differences from planar QH structures are highlighted.Comment: 5 pages, 4 figures, text + figs revised for clarit

    Probing the Electrostatics of Integer Quantum Hall Edges with Momentum-Resolved Tunnel Spectroscopy

    Full text link
    We present measurements of momentum-resolved magneto-tunneling from a perpendicular two-dimensional (2D) contact into integer quantum Hall (QH) edges at a sharp edge potential created by cleaved edge overgrowth. Resonances in the tunnel conductance correspond to coincidences of electronic states of the QH edge and the 2D contact in energy-momentum space. With this dispersion relation reflecting the potential distribution at the edge we can directly measure the band bending at our cleaved edge under the influence of an external voltage bias. At finite bias we observe significant deviations from the flat-band condition in agreement with self-consistent calculations of the edge potential

    Vertical quantum wire realized with double cleaved-edge overgrowth

    Get PDF
    A quantum wire is fabricated on (001)-GaAs at the intersection of two overgrown cleaves. The wire is contacted at each end to n+ GaAs layers via two-dimensional (2D) leads. A sidegate controls the density of the wire revealing conductance quantization. The step height is strongly reduced from 2e^2/h due to the 2D-lead series resistance. We characterize the 2D density and mobility for both cleave facets with four-point measurements. The density on the first facet is modulated by the substrate potential, depleting a 2um wide strip that defines the wire length. Micro-photoluminescence shows an extra peak consistent with 1D electron states at the corner.Comment: 4 pages, 4 figure

    Measuring carrier density in parallel conduction layers of quantum Hall systems

    Full text link
    An experimental analysis for two parallel conducting layers determines the full resistivity tensor of the parallel layer, at magnetic fields where the other layer is in the quantum Hall regime. In heterostructures which exhibit parallel conduction in the modulation-doped layer, this analysis quantitatively determines the charge density in the doping layer and can be used to estimate the mobility. To illustrate one application, experimental data show magnetic freeze-out of parallel conduction in a modulation doped heterojunction. As another example, the carrier density of a minimally populated second subband in a two-subband quantum well is determined. A simple formula is derived that can estimate the carrier density in a highly resistive parallel layer from a single Hall measurement of the total system.Comment: 7 pages, 7 figure

    Four-point measurements of n- and p-type two-dimensional systems fabricated with cleaved-edge overgrowth

    Full text link
    We demonstrate a contact design that allows four-terminal magnetotransport measurements of cleaved-edge overgrown two-dimensional electron and hole systems. By lithographically patterning and etching a bulk-doped surface layer, finger-shaped leads are fabricated, which contact the two-dimensional systems on the cleave facet. Both n- and p-type two-dimensional systems are demonstrated at the cleaved edge, using Si as either donor or acceptor, dependent on the growth conditions. Four-point measurements of both gated and modulation-doped samples yield fractional quantum Hall features for both n- and p-type, with several higher-order fractions evident in n-type modulation-doped samples.Comment: 3 pages, 3 figure
    corecore