15 research outputs found

    General Chemistry Student Attitudes and Success with Use of Online Homework: Traditional- Responsive versus Adaptive-Responsive

    Get PDF
    We investigated whether use of an adaptive-responsive online homework system (OHS) that tailors homework to students’ prior knowledge and periodically reassesses students to promote learning through practice retrieval has inherent advantages over traditional-responsive online homework. A quasi-experimental cohort control post-test-only design with nonequivalent groups and propensity scores with nearest neighbor matching (n = 6,114 pairs) was used. The adaptive system was found to increase the odds of a higher final letter grade for average, below average, and failing students. However, despite the learning advantages, students self-reported less favorable attitudes toward adaptive-responsive (3.15 of 5) relative to traditional-responsive OHS (3.31). Specific to the adaptive OHS, the following were found: (i) student attitudes were moderately and positively correlated (r = 0.36, p \u3c 0.01) to final letter grade, (ii) most students (95%) reported engaging in remediation of incorrect responses, (iii) a majority of students (69%) reported changes in study habits, and (iv) students recognized the benefit of using adaptive OHS by ranking its assignments and explanations or review materials as two of the top three most useful course aspects contributing to perceived learning. Instructors can use our findings to inform their choice of online homework system for formative assessment of chemistry learning by weighing the benefits, disadvantages, and learning pedagogies of traditional-responsive versus adaptive-responsive systems

    Structure of Colloid-Polymer Suspensions

    Full text link
    We discuss structural correlations in mixtures of free polymer and colloidal particles based on a microscopic, 2-component liquid state integral equation theory. Whereas in the case of polymers much smaller than the spherical particles the relevant polymer degree of freedom is the center of mass, for polymers larger than the (nano-) particles conformational rearrangements need to be considered. They have the important consequence that the polymer depletion layer exhibits two widely different length scales, one of the order of the particle radius, the other of the order of the polymer radius or the polymer density screening length in dilute or semidilute concentrations, respectively. Their consequences on phase stability and structural correlations are discussed extensively.Comment: 37 pages, 17 figures; topical feature articl

    Macromolecular theory of solvation and structure in mixtures of colloids and polymers

    Full text link
    The structural and thermodynamic properties of mixtures of colloidal spheres and non-adsorbing polymer chains are studied within a novel general two-component macromolecular liquid state approach applicable for all size asymmetry ratios. The dilute limits, when one of the components is at infinite dilution but the other concentrated, are presented and compared to field theory and models which replace polymer coils with spheres. Whereas the derived analytical results compare well, qualitatively and quantitatively, with mean-field scaling laws where available, important differences from ``effective sphere'' approaches are found for large polymer sizes or semi-dilute concentrations.Comment: 23 pages, 10 figure
    corecore