32,527 research outputs found

    Young Member Programs for Cooperatives

    Get PDF
    The overall objective of this study is to provide cooperative decision makers with effective strategies for developing young member programs in local cooperatives. To accomplish this, the study sets out to determine: (1) the range and scope of young member programs and activities utilized by a sample of local cooperatives, (2) the relationship of young member programs and activities to the legislative system of local cooperatives, (3) the factors that block integration of young member programs and activities into local cooperatives and (4) the organizing procedures that help stimulate the development of young member programs and activities.Cooperative, young member, education, program, participation, Agribusiness,

    Subroutines GEORGE and DRASTC simplify operation of automatic digital plotter

    Get PDF
    FORTRAN language subroutines enable the production of a tape for a 360-30 tape unit that controls the CALCOMP 566 Digital Incremental Plotter. This provides the plotter with instructions for graphically displaying data points with the proper scaling of axes, numbering, lettering, and tic marking

    Boiler for generating high quality vapor

    Get PDF
    Boiler supplies vapor for use in turbines by imparting a high angular velocity to the liquid annulus in heated rotating drum. Drum boiler provides a sharp interface between boiling liquid and vapor, thereby, inhibiting the formation of unwanted liquid droplets

    Orbital control in strained ultra-thin LaNiO3_3/LaAlO3_3 superlattices

    Full text link
    In pursuit of rational control of orbital polarization, we present a combined experimental and theoretical study of single unit cell superlattices of the correlated metal LaNiO3_3 and the band insulator LaAlO3_3. Polarized x-ray absorption spectra show a distinct asymmetry in the orbital response under strain. A splitting of orbital energies consistent with octahedral distortions is found for the case of compressive strain. In sharp contrast, for tensile strain, no splitting is found although a strong orbital polarization is present. Density functional theory calculations including a Hubbard U term reveal that this asymmetry is a result of the interplay of strain and confinement induces octahedral rotations and distortions and altered covalency in the bonding across the interfacial Ni-O-Al apical oxygen, leading to a charge disporportionation at the Ni sites for tensile strain.Comment: 4 pages. 5 figure

    Strain-mediated metal-insulator transition in epitaxial ultra-thin films of NdNiO3

    Full text link
    We have synthesized epitaxial NdNiO3_{3} ultra-thin films in a layer-by-layer growth mode under tensile and compressive strain on SrTiO3_{3} (001) and LaAlO3_3 (001), respectively. A combination of X-ray diffraction, temperature dependent resistivity, and soft X-ray absorption spectroscopy has been applied to elucidate electronic and structural properties of the samples. In contrast to the bulk NdNiO3_{3}, the metal-insulator transition under compressive strain is found to be completely quenched, while the transition remains under the tensile strain albeit modified from the bulk behavior.Comment: 4 pages, 4 figure

    Diversity in the organization of elastin bundles and intramembranous muscles in bat wings

    Get PDF
    Unlike birds and insects, bats fly with wings composed of thin skin that envelops the bones of the forelimb and spans the area between the limbs, digits, and sometimes the tail. This skin is complex and unusual; it is thinner than typical mammalian skin and contains organized bundles of elastin and embedded skeletal muscles. These elements are likely responsible for controlling the shape of the wing during flight and contributing to the aerodynamic capabilities of bats. We examined the arrangement of two macroscopic architectural elements in bat wings, elastin bundles and wing membrane muscles, to assess the diversity in bat wing skin morphology. We characterized the plagiopatagium and dactylopatagium of 130 species from 17 families of bats using cross‐polarized light imaging. This method revealed structures with distinctive relative birefringence, heterogeneity of birefringence, variation in size, and degree of branching. We used previously published anatomical studies and tissue histology to identify birefringent structures, and we analyzed their architecture across taxa. Elastin bundles, muscles, neurovasculature, and collagenous fibers are present in all species. Elastin bundles are oriented in a predominantly spanwise or proximodistal direction, and there are five characteristic muscle arrays that occur within the plagiopatagium, far more muscle than typically recognized. These results inform recent functional studies of wing membrane architecture, support the functional hypothesis that elastin bundles aid wing folding and unfolding, and further suggest that all bats may use these architectural elements for flight. All species also possess numerous muscles within the wing membrane, but the architecture of muscle arrays within the plagiopatagium varies among families. To facilitate present and future discussion of these muscle arrays, we refine wing membrane muscle nomenclature in a manner that reflects this morphological diversity. The architecture of the constituents of the skin of the wing likely plays a key role in shaping wings during flight

    Effect of polar discontinuity on the growth of LaNiO3/LaAlO3 superlattices

    Full text link
    We have conducted a detailed microscopic investigation of [LaNiO3(1 u.c.)/LaAlO3(1 u.c.)]N superlattices grown on (001) SrTiO3 and LaAlO3 to explore the influence of polar mismatch on the resulting electronic and structural properties. Our data demonstrate that the initial growth on the non-polar SrTiO3 surface leads to a rough morphology and unusual 2+ valence of Ni in the first LaNiO3 layer, which is not observed after growth on the polar surface of LaAlO3. A newly devised model suggests that the polar mismatch can be resolved if the perovskite layers grow with an excess of LaO, which also accounts for the observed electronic, chemical, and structural effects.Comment: 3 pages, 3 figure

    Structure of a liquid crystalline fluid around a macroparticle: Density functional theory study

    Full text link
    The structure of a molecular liquid, in both the nematic liquid crystalline and isotropic phases, around a cylindrical macroparticle, is studied using density functional theory. In the nematic phase the structure of the fluid is highly anisotropic with respect to the director, in agreement with results from simulation and phenomenological theories. On going into the isotropic phase the structure becomes rotationally invariant around the macroparticle with an oriented layer at the surface.Comment: 10 pages, 6 figues. Submitted to Phys. Rev.

    Modelling bacterial behaviour close to a no-slip plane boundary: the influence of bacterial geometry

    Get PDF
    We describe a boundary-element method used to model the hydrodynamics of a bacterium propelled by a single helical flagellum. Using this model, we optimize the power efficiency of swimming with respect to cell body and flagellum geometrical parameters, and find that optima for swimming in unbounded fluid and near a no-slip plane boundary are nearly indistinguishable. We also consider the novel optimization objective of torque efficiency and find a very different optimal shape. Excluding effects such as Brownian motion and electrostatic interactions, it is demonstrated that hydrodynamic forces may trap the bacterium in a stable, circular orbit near the boundary, leading to the empirically observable surface accumulation of bacteria. Furthermore, the details and even the existence of this stable orbit depend on geometrical parameters of the bacterium, as described in this article. These results shed some light on the phenomenon of surface accumulation of micro-organisms and offer hydrodynamic explanations as to why some bacteria may accumulate more readily than others based on morphology

    Local Electronic and Magnetic Studies of an Artificial La2FeCrO6 Double Perovskite

    Full text link
    Through the utilization of element-resolved polarized x-ray probes, the electronic and magnetic state of an artificial La2FeCrO6 double perovskite were explored. Applying unit-cell level control of thin film growth on SrTiO3 (111), the rock salt double perovskite structure can be created for this system, which does not have an ordered perovskite phase in the bulk. We find that the Fe and Cr are in the proper 3+ valence state, but, contrary to previous studies, the element-resolved magnetic studies find the moments in field are small and show no evidence of a sizable magnetic moment in the remanent state.Comment: 3 pages, 4 figure
    corecore