3,128 research outputs found

    First Measurement of the Clustering Evolution of Photometrically-Classified Quasars

    Get PDF
    We present new measurements of the quasar autocorrelation from a sample of \~80,000 photometrically-classified quasars taken from SDSS DR1. We find a best-fit model of ω(θ)=(0.066±0.0240.026)θ−(0.98±0.15)\omega(\theta) = (0.066\pm^{0.026}_{0.024})\theta^{-(0.98\pm0.15)} for the angular autocorrelation, consistent with estimates from spectroscopic quasar surveys. We show that only models with little or no evolution in the clustering of quasars in comoving coordinates since z~1.4 can recover a scale-length consistent with local galaxies and Active Galactic Nuclei (AGNs). A model with little evolution of quasar clustering in comoving coordinates is best explained in the current cosmological paradigm by rapid evolution in quasar bias. We show that quasar biasing must have changed from b_Q~3 at a (photometric) redshift of z=2.2 to b_Q~1.2-1.3 by z=0.75. Such a rapid increase with redshift in biasing implies that quasars at z~2 cannot be the progenitors of modern L* objects, rather they must now reside in dense environments, such as clusters. Similarly, the duration of the UVX quasar phase must be short enough to explain why local UVX quasars reside in essentially unbiased structures. Our estimates of b_Q are in good agreement with recent spectroscopic results, which demonstrate the implied evolution in b_Q is consistent with quasars inhabiting halos of similar mass at every redshift. Treating quasar clustering as a function of both redshift and luminosity, we find no evidence for luminosity dependence in quasar clustering, and that redshift evolution thus affects quasar clustering more than changes in quasars' luminosity. We provide a new method for quantifying stellar contamination in photometrically-classified quasar catalogs via the correlation function.Comment: 34 pages, 10 figures, 1 table, Accepted to ApJ after: (i) Minor textual changes; (ii) extra points added to Fig.

    Optically-passive spirals: The missing link in gradual star formation suppression upon cluster infall

    Get PDF
    Galaxies migrate from the blue cloud to the red sequence when their star formation is quenched. Here, we report on galaxies quenched by environmental effects and not by mergers or strong AGN as often invoked: They form stars at a reduced rate which is optically even less conspicuous, and manifest a transition population of blue spirals evolving into S0 galaxies. These 'optically passive' or 'red spirals' are found in large numbers in the STAGES project (and by Galaxy Zoo) in the infall region of clusters and groups.Comment: Proceedings of "The Starburst-AGN connection" conference held in Shanghai, Oct 27-31, 200

    Connecting LHC, ILC, and Quintessence

    Get PDF
    If the cold dark matter consists of weakly interacting massive particles (WIMPs), anticipated measurements of the WIMP properties at the Large Hadron Collider (LHC) and the International Linear Collider (ILC) will provide an unprecedented experimental probe of cosmology at temperatures of order 1 GeV. It is worth emphasizing that the expected outcome of these tests may or may not be consistent with the picture of standard cosmology. For example, in kination-dominated quintessence models of dark energy, the dark matter relic abundance can be significantly enhanced compared to that obtained from freeze out in a radiation-dominated universe. Collider measurements then will simultaneously probe both dark matter and dark energy. In this article, we investigate the precision to which the LHC and ILC can determine the dark matter and dark energy parameters under those circumstances. We use an illustrative set of four benchmark points in minimal supergravity in analogy with the four LCC benchmark points. The precision achievable together at the LHC and ILC is sufficient to discover kination-dominated quintessence, under the assumption that the WIMPs are the only dark matter component. The LHC and ILC can thus play important roles as alternative probes of both dark matter and dark energy.Comment: 38 pages, 9 figure

    Obscured star formation in intermediate-density environments:A Spitzer study of the Abell 901/902 supercluster

    Get PDF
    We explore the amount of obscured star formation as a function of environment in the Abell 901/902 (A901/902) supercluster at z = 0.165 in conjunction with a field sample drawn from the A901 and CDFS fields, imaged with the Hubble Space Telescope as part of the Space Telescope A901/902 Galaxy Evolution Survey and Galaxy Evolution from Morphology and Spectral Energy Distributions (SEDs) Survey. We combine the combo-17 near-UV/optical SED with Spitzer 24 mu m photometry to estimate both the unobscured and obscured star formation in galaxies with M-* > 10(10) M-circle dot. We find that the star formation activity in massive galaxies is suppressed in dense environments, in agreement with previous studies. Yet, nearly 40% of the star-forming (SF) galaxies have red optical colors at intermediate and high densities. These red systems are not starbursting; they have star formation rates (SFRs) per unit stellar mass similar to or lower than blue SF galaxies. More than half of the red SF galaxies have low infrared-to-ultraviolet (IR-to-UV) luminosity ratios, relatively high Sersicindices, and they are equally abundant at all densities. They might be gradually quenching their star formation, possibly but not necessarily under the influence of gas-removing environmental processes. The other greater than or similar to 40% of the red SF galaxies have high IR-to-UV luminosity ratios, indicative of high dust obscuration. They have relatively high specific SFRs and are more abundant at intermediate densities. Our results indicate that while there is an overall suppression in the SF galaxy fraction with density, the small amount of star formation surviving the cluster environment is to a large extent obscured, suggesting that environmental interactions trigger a phase of obscured star formation, before complete quenching

    Geometry of River Networks I: Scaling, Fluctuations, and Deviations

    Get PDF
    This article is the first in a series of three papers investigating the detailed geometry of river networks. Large-scale river networks mark an important class of two-dimensional branching networks, being not only of intrinsic interest but also a pervasive natural phenomenon. In the description of river network structure, scaling laws are uniformly observed. Reported values of scaling exponents vary suggesting that no unique set of scaling exponents exists. To improve this current understanding of scaling in river networks and to provide a fuller description of branching network structure, we report here a theoretical and empirical study of fluctuations about and deviations from scaling. We examine data for continent-scale river networks such as the Mississippi and the Amazon and draw inspiration from a simple model of directed, random networks. We center our investigations on the scaling of the length of sub-basin's dominant stream with its area, a characterization of basin shape known as Hack's law. We generalize this relationship to a joint probability density and show that fluctuations about scaling are substantial. We find strong deviations from scaling at small scales which can be explained by the existence of linear network structure. At intermediate scales, we find slow drifts in exponent values indicating that scaling is only approximately obeyed and that universality remains indeterminate. At large scales, we observe a breakdown in scaling due to decreasing sample space and correlations with overall basin shape. The extent of approximate scaling is significantly restricted by these deviations and will not be improved by increases in network resolution.Comment: 16 pages, 13 figures, Revtex4, submitted to PR

    Distinct subpopulations of DN1 thymocytes exhibit preferential γδ T lineage potential

    Get PDF
    The αβ and γδ T cell lineages both differentiate in the thymus from common uncommitted progenitors. The earliest stage of T cell development is known as CD4-CD8- double negative 1 (DN1), which has previously been shown to be a heterogenous mixture of cells. Of these, only the CD117+ fraction has been proposed to be true T cell progenitors that progress to the DN2 and DN3 thymocyte stages, at which point the development of the αβ and γδ T cell lineages diverge. However, recently, it has been shown that at least some γδ T cells may be derived from a subset of CD117- DN thymocytes. Along with other ambiguities, this suggests that T cell development may not be as straightforward as previously thought. To better understand early T cell development, particularly the heterogeneity of DN1 thymocytes, we performed a single cell RNA sequence (scRNAseq) of mouse DN and γδ thymocytes and show that the various DN stages indeed comprise a transcriptionally diverse subpopulations of cells. We also show that multiple subpopulations of DN1 thymocytes exhibit preferential development towards the γδ lineage. Furthermore, specific γδ-primed DN1 subpopulations preferentially develop into IL-17 or IFNγ-producing γδ T cells. We show that DN1 subpopulations that only give rise to IL-17-producing γδ T cells already express many of the transcription factors associated with type 17 immune cell responses, while the DN1 subpopulations that can give rise to IFNγ-producing γδ T cell already express transcription factors associated with type 1 immune cell responses

    Unified View of Scaling Laws for River Networks

    Full text link
    Scaling laws that describe the structure of river networks are shown to follow from three simple assumptions. These assumptions are: (1) river networks are structurally self-similar, (2) single channels are self-affine, and (3) overland flow into channels occurs over a characteristic distance (drainage density is uniform). We obtain a complete set of scaling relations connecting the exponents of these scaling laws and find that only two of these exponents are independent. We further demonstrate that the two predominant descriptions of network structure (Tokunaga's law and Horton's laws) are equivalent in the case of landscapes with uniform drainage density. The results are tested with data from both real landscapes and a special class of random networks.Comment: 14 pages, 9 figures, 4 tables (converted to Revtex4, PRE ref added

    A new automatic method to identify galaxy mergers - I. Description and application to the Space Telescope A901/902 Galaxy Evolution Survey

    Get PDF
    We present a new automatic method to identify galaxy mergers using the morphological information contained in the residual images of galaxies after the subtraction of a smooth Sérsic model. The removal of the bulk signal from the host galaxy light is done with the aim of detecting the much fainter and elusive minor mergers. The specific morphological parameters that are used in the merger diagnostic suggested here are the residual flux fraction (RFF) and the asymmetry of the residuals [A(Res)]. The new diagnostic has been calibrated and optimized so that the resulting merger sample is very complete. However, the contamination by non-mergers is also high. If the same optimization method is adopted for combinations of other structural parameters such as the Concentration, Asymmetry, clumpineSs (CAS) system, the merger indicator we introduce yields merger samples of equal or higher statistical quality than the samples obtained through the use of other structural parameters. We investigate the ability of the method presented here to select minor mergers by identifying a sample of visually classified mergers that would not have been picked up by the use of the CAS system, when using its usual limits. However, given the low prevalence of mergers among the general population of galaxies and the optimization used here, we find that the merger diagnostic introduced in this work is best used as a negative merger test, that is, it is very effective at selecting non-merging galaxies. In common with all the currently available automatic methods, the sample of merger candidates selected is heavily contaminated by non-mergers, and further steps are needed to produce a clean merger sample. This merger diagnostic has been developed using the Hubble Space Telescope/ACS F606W images of the A901/902 multiple cluster system (z= 0.165) obtained by the Space Telescope A901/902 Galaxy Evolution Survey team. In particular, we have focused on a mass- and magnitude-limited sample (log M/M⊙ > 9.0, RVega, Total≤ 23.5 mag) which includes 905 cluster galaxies and 655 field galaxies of all morphological type
    • …
    corecore