70 research outputs found

    In Tribute: Hamlet J. ( Chips ) Barry, III

    Get PDF

    HARP/ACSIS: A submillimetre spectral imaging system on the James Clerk Maxwell Telescope

    Full text link
    This paper describes a new Heterodyne Array Receiver Programme (HARP) and Auto-Correlation Spectral Imaging System (ACSIS) that have recently been installed and commissioned on the James Clerk Maxwell Telescope (JCMT). The 16-element focal-plane array receiver, operating in the submillimetre from 325 to 375 GHz, offers high (three-dimensional) mapping speeds, along with significant improvements over single-detector counterparts in calibration and image quality. Receiver temperatures are ∼\sim120 K across the whole band and system temperatures of ∼\sim300K are reached routinely under good weather conditions. The system includes a single-sideband filter so these are SSB figures. Used in conjunction with ACSIS, the system can produce large-scale maps rapidly, in one or more frequency settings, at high spatial and spectral resolution. Fully-sampled maps of size 1 square degree can be observed in under 1 hour. The scientific need for array receivers arises from the requirement for programmes to study samples of objects of statistically significant size, in large-scale unbiased surveys of galactic and extra-galactic regions. Along with morphological information, the new spectral imaging system can be used to study the physical and chemical properties of regions of interest. Its three-dimensional imaging capabilities are critical for research into turbulence and dynamics. In addition, HARP/ACSIS will provide highly complementary science programmes to wide-field continuum studies, and produce the essential preparatory work for submillimetre interferometers such as the SMA and ALMA.Comment: MNRAS Accepted 2009 July 2. 18 pages, 25 figures and 6 table

    The Neuronal Correlates of Digits Backward Are Revealed by Voxel-Based Morphometry and Resting-State Functional Connectivity Analyses

    Get PDF
    Digits backward (DB) is a widely used neuropsychological measure that is believed to be a simple and effective index of the capacity of the verbal working memory. However, its neural correlates remain elusive. The aim of this study is to investigate the neural correlates of DB in 299 healthy young adults by combining voxel-based morphometry (VBM) and resting-state functional connectivity (rsFC) analyses. The VBM analysis showed positive correlations between the DB scores and the gray matter volumes in the right anterior superior temporal gyrus (STG), the right posterior STG, the left inferior frontal gyrus and the left Rolandic operculum, which are four critical areas in the auditory phonological loop of the verbal working memory. Voxel-based correlation analysis was then performed between the positive rsFCs of these four clusters and the DB scores. We found that the DB scores were positively correlated with the rsFCs within the salience network (SN), that is, between the right anterior STG, the dorsal anterior cingulate cortex and the right fronto-insular cortex. We also found that the DB scores were negatively correlated with the rsFC within an anti-correlation network of the SN, between the right posterior STG and the left posterior insula. Our findings suggest that DB performance is related to the structural and functional organizations of the brain areas that are involved in the auditory phonological loop and the SN

    Processing of chloroplast ribosomal RNA transcripts in Euglena gracilis bacillaris

    Full text link
    The ribosomal RNA operons ( rrn operons) of Euglena gracilis chloroplasts contain genes for (in order) 16S rRNA, tRNA Ile , tRNA Ala , 23S rRNA and 5S rRNA. Major sites of cleavage of the primary rrn transcript were identified by Northern blot hybridization and S1-mapping. The presumptive termini of all of the mature products have now been identified. During initial processing in the chloroplast, the primary transcript is cleaved between the two tRNAs and between the 23S and 5S rRNAs so as to separate the sequences found in the different mature rRNAs. Subsequently the tRNAs are separated from the rRNAs, further trimming provides the remaining proper ends, and the 3′-ends of the tRNAs are added.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46969/1/294_2004_Article_BF00419917.pd

    HARPACSIS: A submillimetre spectral imaging system on the James Clerk Maxwell Telescope

    No full text
    This paper describes a new Heterodyne Array Receiver Program (HARP) and Auto-Correlation Spectral Imaging System (ACSIS) that have recently been installed and commissioned on the James Clerk Maxwell Telescope. The 16-element focal-plane array receiver, operating in the submillimetre from 325 to 375 GHz, offers high (three-dimensional) mapping speeds, along with significant improvements over single-detector counterparts in calibration and image quality. Receiver temperatures are ∼120 K across the whole band, and system temperatures of ∼300 K are reached routinely under good weather conditions. The system includes a single-sideband (SSB) filter so these are SSB values. Used in conjunction with ACSIS, the system can produce large-scale maps rapidly, in one or more frequency settings, at high spatial and spectral resolution. Fully sampled maps of size can be observed in under 1 h. The scientific need for array receivers arises from the requirement for programmes to study samples of objects of statistically significant size, in large-scale unbiased surveys of galactic and extra-galactic regions. Along with morphological information, the new spectral imaging system can be used to study the physical and chemical properties of regions of interest. Its three-dimensional imaging capabilities are critical for research into turbulence and dynamics. In addition, HARPACSIS will provide highly complementary science programmes to wide-field continuum studies and produce the essential preparatory work for submillimetre interferometers such as the Submillimeter Array (SMA) and Atacama Large MillimeterSubmillimeter Array (ALMA). © 2009 RAS
    • …
    corecore